Skip to main content
Log in

The asymptotic behavior of fragmentation processes

  • Published:
Journal of the European Mathematical Society

Abstract

The fragmentation processes considered in this work are self-similar Markov processes which are meant to describe the evolution of a mass that falls apart randomly as time passes. We investigate their pathwise asymptotic behavior as t→∞. In the so-called homogeneous case, we first point at a law of large numbers and a central limit theorem for (a modified version of) the empirical distribution of the fragments at time t. These results are reminiscent of those of Asmussen and Kaplan [3] and Biggins [12] for branching random walks. Next, in the same vein as Biggins [10], we also investigate some natural martingales, which open the way to an almost sure large deviation principle by an application of the Gärtner-Ellis theorem. Finally, some asymptotic results in the general self-similar case are derived by time-change from the previous ones. Properties of size-biased picked fragments provide key tools for the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Aldous, D.J., Pitman, J.: The standard additive coalescent. Ann. Probab. 26, 1703–1726 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Asmussen, S., Kaplan, N.: Branching random walks. I–II. Stochastic Processes Appl. 4, 1–13 and 15–31 (1976)

    Article  MATH  Google Scholar 

  4. Berestycki, J.: Ranked fragmentations. ESAIM, Probab. Stat. 6, 157–176 (2002). Available via http://www.edpsciences.org/ps/OnlinePSbis.html

    Google Scholar 

  5. Bertoin, J.: A fragmentation process connected to Brownian motion. Probab. Theory Relat. Fields 117, 289–301 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoin, J.: Homogeneous fragmentation processes. Probab. Theory Relat. Fields 121, 301–318 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Bertoin, J.: Self-similar fragmentations. Ann. Inst. Henri Poincaré 38, 319–340 (2002)

    Article  MATH  Google Scholar 

  8. Bertoin, J., Caballero, M.-E.: Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli 8, 195–205 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Bertoin, J., Rouault, A.: Additive martingales and probability tilting for homogeneous fragmentations. Preprint (2003)

  10. Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    MATH  Google Scholar 

  11. Biggins, J.D.: Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14, 630–636 (1977)

    MATH  Google Scholar 

  12. Biggins, J.D.: The central limit theorem for the supercritical branching random walk, and related results. Stochastic Processes Appl. 34, 255–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biggins, J.D.: Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Brennan, M.D., Durrett, R.: Splitting intervals. Ann. Probab. 14, 1024–1036 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Brennan, M.D., Durrett, R.: Splitting intervals. II. Limit laws for lengths. Probab. Theory Relat. Fields 75, 109–127 (1987)

    MATH  Google Scholar 

  16. Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals of Levy processes. In: Yor, M. (ed.), Exponential functionals and principal values related to Brownian motion. Biblioteca de la Revista Matemática Iberoamericana 1997

  17. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Second edition. Berlin: Springer 1998

  18. Filippov, A.F.: On the distribution of the sizes of particles which undergo splitting. Theory Probab. Appl. 6, 275–293 (1961)

    MATH  Google Scholar 

  19. Kolmogoroff, A.N.: Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. C. R. (Doklady) Acad. Sci. URSS 31, 99–101 (1941)

    MathSciNet  MATH  Google Scholar 

  20. Lamperti, J.: Semi-stable Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 22, 205–225 (1972)

    MATH  Google Scholar 

  21. Lépingle, D.: La variation d’ordre p des semi-martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 295–316 (1976)

    Google Scholar 

  22. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of L log L citeria for mean behaviour of branching processes. Ann. Probab. 23, 1125–1138 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Miermont, G.: Self-similar fragmentations derived from the stable tree I: splitting at heights. Preprint (2003). To appear in Probab. Theory Relat. Fields

  24. Miermont, G.: Self-similar fragmentations derived from the stable tree II: splitting at hubs. Preprint (2003)

  25. Pitman, J.: Coalescent with multiple collisions. Ann. Probab. 27, 1870–1902 (1999)

    MATH  Google Scholar 

  26. Schweinsberg, J.: Coalescent with simultaneous multiple collisions. Electron J. Probab. 5–12, 1–50 (2000). http://www.math.washington.edu/˜ejpecp/ejp5contents.html

  27. Sznitman, A.-S.: Topics in propagation of chaos. Ecole d’été de Probabilités de St-Flour XIX, Lect. Notes Math. 1464. Springer 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bertoin.

Additional information

Mathematics Subject Classification (2000)

60J25, 60G09

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoin, J. The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. 5, 395–416 (2003). https://doi.org/10.1007/s10097-003-0055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10097-003-0055-3

Keywords

Navigation