Skip to main content
Log in

Rigidity and gluing for Morse and Novikov complexes

  • Published:
Journal of the European Mathematical Society

Abstract

We obtain rigidity and gluing results for the Morse complex of a real-valued Morse function as well as for the Novikov complex of a circle-valued Morse function. A rigidity result is also proved for the Floer complex of a hamiltonian defined on a closed symplectic manifold (M,ω) with c 1|π2(M)=[ω]|π2(M)=0. The rigidity results for these complexes show that the complex of a fixed generic function/hamiltonian is a retract of the Morse (respectively Novikov or Floer) complex of any other sufficiently C 0 close generic function/hamiltonian. The gluing result is a type of Mayer-Vietoris formula for the Morse complex. It is used to express algebraically the Novikov complex up to isomorphism in terms of the Morse complex of a fundamental domain. Morse cobordisms are used to compare various Morse-type complexes without the need of bifurcation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A., Majer, P.: Morse homology on Hilbert spaces. Commun. Pure Appl. Math. 54, 689–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cieliebak, K., Floer, A., Hofer, H.: Symplectic homology II: A general construction. Math. Z. 218, 103–122 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Farber, M., Ranicki, A.A.: The Morse-Novikov theory of circle-valued functions and noncommutative localization. E-print http://arXiv.org/abs/math.DG/9812122, Proc. 1998 Moscow Conference for S.P. Novikov’s 60th Birthday. Proc. Steklov Inst. 225, 381–388 (1999)

  4. Floer, A., Hofer, H.: Coherent orientations for periodic orbit problems in symplectic geometry. Math. Z. 212, 13–38 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Floer, A., Hofer, H.: Symplectic homology I: Open sets in ℂn. Math. Z. 215, 37–88 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Floer, A., Hofer, H., Salamon, D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80, 251–292 (1996)

    MATH  Google Scholar 

  7. Franks, J.: Morse-Smale flows and homotopy theory. Topology 18, 199–215 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirsch, M.W.: Differential Topology. Grad. Texts Math. 33. Springer 1976

  9. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser 1994

  10. Hutchings, M.: Reidemeister torsion in generalized Morse theory. Forum Math. 14, 209–244 (2002). E-print http://arXiv.org/abs/math.DG/9907066

    MathSciNet  MATH  Google Scholar 

  11. Hutchings, M., Lee, Y.-J.: Circle-valued Morse theory and Reidemeister torsion. Geom. Topol. 3, 369–396 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Latour, F.: Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham. Publ. Math., Inst. Hautes Études Sci. 80, 135–194 (1995)

    Google Scholar 

  13. Laudenbach, F.: On the Thom-Smale complex. Astérisque 205, 219–233 (1992)

    Google Scholar 

  14. Milnor, J.: Morse Theory. Ann. Math. Stud. 51. Princeton 1963

  15. Novikov, S.P.: The hamiltonian formalism and a multi-valued analogue of Morse theory. Uspeki Mat. 37, 3–49 (1982). English tr. Russ. Math. Surv. 37, 1–56 (1982)

    MATH  Google Scholar 

  16. Pajitnov, A.: C 0-generic properties of the boundary operators in the Novikov complex. E-print math.DG/9812157. A.M.S. Translations 197, 29–117 (1999)

  17. Ranicki, A.: The algebraic construction of the Novikov complex of a circle-valued Morse function. Math. Ann. 322, 745–785 (2002). E-print http://arXiv.org/abs/math.dg-ga/9903090

    Article  MathSciNet  MATH  Google Scholar 

  18. Salamon, D.: Lectures on Floer Homology. Symplectic Geometry and Topology, ed. by Y. Eliashberg, L. Traynor, IAS/Park City Mathematics series 7, 143–230 (1999)

    Google Scholar 

  19. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian Systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Octav Cornea or Andrew Ranicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornea, O., Ranicki, A. Rigidity and gluing for Morse and Novikov complexes. J. Eur. Math. Soc. 5, 343–394 (2003). https://doi.org/10.1007/s10097-003-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10097-003-0052-6

Keywords

Navigation