Skip to main content
Log in

Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The present work aimed to: (a) evaluate the biofilm-forming ability of different strains of CNS field isolates; (b) evaluate their virulence potential through the assessment of the Madin–Darby canine kidney (MDCK) cytotoxicity assay; (c) determine the frequency of biofilm-associated genes among these CNS isolates. Biofilm markers associated with biofilm formation and MDCK cells cytotoxicity were compared to find possible associations with pathogenicity. CNS isolates (n = 94) belonging to 11 different species were tested for slime production using the tube test (TA) and the Congo red agar plate test (CRA), while the presence of icaA and icaD genes were evaluated by d-PCR. Two points were addressed for the first time: (1) the specific relationship between slime phenotype and icaD gene expression; (2) the specific relationship between slime phenotype, icaAD genes, and MDCK cytotoxicity. The proportion of biofilm-positive/icaD-positive versus biofilm-positive/icaD-negative strains was 9:0 and 9:0 (81.8 %) by the TA and CRA, which clearly indicates that icaD was a more reliable gene to be accounted for in the biofilm formation. MDCK recorded a higher proportion than that recorded by the CRA and TA results (MDCK-positive/icaD-positive versus MDCK-positive/icaD-negative 10:0, 90.9 %). Evaluation of the ica operon, CRA plate test, TA, and MDCK can contribute to the high clinical impact in the management of antibiotic therapy, in infections associated with devices in veterinary medicine, the dairy industry, and food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patel I, Patel V, Thakkar A, Kothari V (2013) Microbial biofilms: microbes in social mode. Int J Biotechnol Res Prac 1:19–34

    Google Scholar 

  2. Melo PC (2013) Biofilms in veterinary medicine “impact and consequences of food quality and the treatment of infectious disease”. In: Mendez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology, and education. Formatex

  3. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh A, Walker M, Rousseau J, Weese JS (2013) Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet Res 9:93

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mertens A, Ghebremedhin B (2013) Genetic determinants and biofilm formation of clinical Staphylococcus epidermidis isolates from blood cultures and indwelling devises. Eur J Microbiol Immunol (Bp) 3:111–119

    Article  CAS  Google Scholar 

  6. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terki IK, Hassaine H, Oufrid S, Bellifa S, Mhamedi I, Lachachi M, Timinouni M (2013) Detection of icaA and icaD genes and biofilm formation in Staphylococcus spp. isolated from urinary catheters at the University Hospital of Tlemcen (Algeria). Afr J Microbiol Res 7:5350–5357

    Google Scholar 

  8. Namvar AE, Asghari B, Ezzatifar F, Azizi G, Lari AR (2013) Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hyg Infect Control 8:Doc03. doi: 10.3205/dgkh000203. URN: urn:nbn:de:0183-dgkh0002035

  9. Oliver SP, Gillespie BE, Headrick SJ, Moorehead H, Lunn P, Dowlen HH, Johnson DL, Lamar KC, Chester ST, Moseley WM (2004) Efficacy of extended ceftiofur intramammary therapy for treatment of subclinical mastitis in lactating dairy cows. J Dairy Sci 87:2393–2400

    Article  CAS  PubMed  Google Scholar 

  10. Sampimon OC, Barkema HW, Berends IMGA, Sol J, Lam TJGM (2009) Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Vet Microbiol 134:37–44

    Article  CAS  PubMed  Google Scholar 

  11. Thorberg BM, Kühn I, Aarestrup FM, Brändström B, Jonsson P, Danielsson-Tham ML (2006) Pheno- and genotyping of Staphylococcus epidermidis isolated from bovine milk and human skin. Vet Microbiol 115:163–172

    Article  CAS  PubMed  Google Scholar 

  12. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Monday SR, Bohach GA (1999) Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol 37:3411–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cramton SE, Gerke C, Schnell NF, Nichols WW, G¨otz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

  15. Raja RK, Ramesh N, Maripandi A (2010) Invasion and interaction studies of Salmonella Typhimurium sub sp enteritis in vero and MDCK cell lines. Adv Biol Res 4:86–91

    Google Scholar 

  16. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24:25–29

    Article  CAS  PubMed  Google Scholar 

  17. François P, Vaudaux P, Foster TJ, Lew DP (1996) Host–bacteria interactions in foreign body infections. Infect Control Hosp Epidemiol 17:514–520

    Article  PubMed  Google Scholar 

  18. Jiang J, Sun JY, Ou YZ, Qin ZQ, Chen JM, Qu D (2006) Influence of ica transcription on biofilm phenotype of Staphylococcus epidermidis clinical isolates. Shanghai Med J 29:40–44

    Google Scholar 

  19. Ziebuhr W, Heilmann C, Götz F, Meyer P, Wilms K, Straube E, Hacker J (1997) Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65:890–896

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou W, Sun X, Wang Z, Zhang Y (2012) Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Invest Ophthalmol Vis Sci 53:5624–5631

    Article  CAS  PubMed  Google Scholar 

  21. Cramton SE, Ulrich M, Götz F, Döring G (2001) Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69:4079–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liberto MC, Matera G, Quirino A, Lamberti AG, Capicotto R, Puccio R, Barreca GS, Focà E, Cascio A, Focà A (2009) Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiol Res 164:522–528

    Article  CAS  PubMed  Google Scholar 

  23. Simojoki H, Hyvönen P, Plumed Ferrer C, Taponen S, Pyörälä S (2012) Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection? Vet Microbiol 158:344–352

    Article  CAS  PubMed  Google Scholar 

  24. Frank KL, Patel R (2007) Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun 75:4728–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188

    Article  PubMed  Google Scholar 

  26. Satorres SE, Alcaráz LE (2007) Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Cent Eur J Public Health 15:87–90

    Article  CAS  PubMed  Google Scholar 

  27. Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baldassarri L, Bertuccini L, Ammendolia MG, Arciola CR, Montanaro L (2001) Effect of iron limitation on slime production by Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 20:343–345

    Article  CAS  PubMed  Google Scholar 

  29. Raza A, Muhammad G, Sharif S, Atta A (2013) Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Mol Microbiol Res 3:1–8

    Google Scholar 

  30. Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A (2010) A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol 33:137–145

    CAS  PubMed  Google Scholar 

  31. Atshan SS, Shamsudin MN (2011) Evaluation of phenotypic and genotypic detection methods for biofilm-forming methicillin-sensitive and methicillin-resistant Staphylococcus aureus clinical isolates. Ann Microbiol 61:825–831

    Article  CAS  Google Scholar 

  32. Vuong C, Otto M (2002) Staphylococcus epidermidis infections. Microbes Infect 4:481–489

    Article  PubMed  Google Scholar 

  33. Atulya M, Jesil Mathew A, Venkata Rao J, Mallikarjuna Rao C (2014) Influence of milk components in establishing biofilm mediated bacterial mastitis infections in cattle: a fractional factorial approach. Res Vet Sci 96:25–27

    Article  CAS  PubMed  Google Scholar 

  34. Piessens V, De Vliegher S, Verbist B, Braem G, Van Nuffel A, De Vuyst L, Heyndrickx M, Van Coillie E (2012) Characterization of coagulase-negative staphylococcus species from cows’ milk and environment based on bap, icaA, and mecA genes and phenotypic susceptibility to antimicrobials and teat dips. J Dairy Sci 95:7027–7038

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, K.M., Abd El-Razik, K.A., Marie, H.S.H. et al. Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. Eur J Clin Microbiol Infect Dis 34, 2009–2016 (2015). https://doi.org/10.1007/s10096-015-2445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2445-3

Keywords

Navigation