Skip to main content
Log in

The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The Mast® D68C test is a phenotypical test that allows the detection of extended-spectrum β-lactamase (ESBL) production, even in AmpC-producing Enterobacteriaceae. We assessed its detection accuracy against a large collection of 106 Enterobacteriaceae isolates producing a wide diversity of well-characterized β-lactamases (53 ESBL producers, 25 Amp. producers, seven AmpC and ESBL producers, five carbapenemase producers, three carbapenemase and ESBL producers, one AmpC, carbapenemase, and ESBL producer, three TEM-1 producers, three SHV-1 producers, three OXA-1 producers, and one hyperOXY producer, ATCC 35218, ATCC 25922 [a β-lactamase-negative control strain]). The results were compared with those of the double disk test and the Clinical and Laboratory Standards Institute (CLSI) confirmatory test for the detection of ESBL. The sensitivity was 90.6 % for the synergy test, 87.5 % for the CLSI method, and only 73.1 % for D68C, which, however, reached 92.1 % if the strains for which supplementary investigations were recommended and the complex mutant TEM (CMT)-producing strains were excluded versus 94.1 % and 88.2 % for the other methods. The specificity was 90.2 % for the synergy test and 100 % for the CLSI method and D68C. D68C was also efficient in detecting AmpC-overproducing strains (sensitivity = 97 %, specificity = 95.9 %): among the 74 strains belonging to natural AmpC-producing species, the sensitivity and specificity were 100 and 94.8 %, respectively. The Mast® D68C-test is a promising method that is easy to perform for the detection of current ESBLs and could also be useful for the detection of plasmid-encoded AmpC enzymes (sensitivity = 100 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bradford PA (2001) Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951, table of contents

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, Cluzel R (1987) Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother 20(3):323–334

    Article  CAS  PubMed  Google Scholar 

  3. Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Naas T, Poirel L, Karim A, Nordmann P (1999) Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 176(2):411–419

    CAS  PubMed  Google Scholar 

  6. Nordmann P, Naas T (1994) Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother 38(1):104–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P (2000) Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 44(3):622–632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Robin F, Delmas J, Schweitzer C, Bonnet R (2008) Evaluation of the Vitek-2 extended-spectrum beta-lactamase test against non-duplicate strains of Enterobacteriaceae producing a broad diversity of well-characterised beta-lactamases. Clin Microbiol Infect 14(2):148–154

    Article  CAS  PubMed  Google Scholar 

  9. Howard SJ, Lass-Flörl C, Cuenca-Estrella M, Gomez-Lopez A, Arendrup MC (2013) Determination of isavuconazole susceptibility of Aspergillus and Candida species by the EUCAST method. Antimicrob Agents Chemother 57(11):5426–5431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2013) EUCAST guideline for the detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf

  11. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162

    Article  PubMed Central  PubMed  Google Scholar 

  12. Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, González-López JJ, Lara N, Martínez-Martínez L, Oliver A, Aracil B, Oteo J, Pascual A, Rodríguez-Baño J, Zamorano L, Navarro F (2013) Prevalence and molecular epidemiology of acquired AmpC beta-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis 32(2):253–259

    Article  PubMed  Google Scholar 

  13. Comité de l’Antibiogramme de la Société Française de Microbiologie (2007) Communiqué 2007

  14. Clinical and Laboratory Standards Institute (CLSI) (2014) Performance standards for antimicrobial susceptibility testing; Twenty-fourth informational supplement update. CLSI document M100-S24. CLSI, Wayne, PA

  15. Beceiro A, Maharjan S, Gaulton T, Doumith M, Soares NC, Dhanji H, Warner M, Doyle M, Hickey M, Downie G, Bou G, Livermore DM, Woodford N (2011) False extended-spectrum {beta}-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrob Chemother 66(9):2006–2010

    Article  CAS  PubMed  Google Scholar 

  16. Poirel L, Mammeri H, Nordmann P (2004) TEM-121, a novel complex mutant of TEM-type beta-lactamase from Enterobacter aerogenes. Antimicrob Agents Chemother 48(12):4528–4531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Robin F, Delmas J, Archambaud M, Schweitzer C, Chanal C, Bonnet R (2006) CMT-type beta-lactamase TEM-125, an emerging problem for extended-spectrum beta-lactamase detection. Antimicrob Agents Chemother 50(7):2403–2408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Robin F, Delmas J, Schweitzer C, Tournilhac O, Lesens O, Chanal C, Bonnet R (2007) Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient. Antimicrob Agents Chemother 51(4):1304–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ingram PR, Inglis TJ, Vanzetti TR, Henderson BA, Harnett GB, Murray RJ (2011) Comparison of methods for AmpC beta-lactamase detection in Enterobacteriaceae. J Med Microbiol 60(Pt 6):715–721

    Article  PubMed  Google Scholar 

  20. Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS (2001) An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. J Antimicrob Chemother 48(5):627–630

    Article  CAS  PubMed  Google Scholar 

  21. Giakkoupi P, Tzouvelekis LS, Tsakris A, Loukova V, Sofianou D, Tzelepi E (2000) IBC-1, a novel integron-associated class A beta-lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain. Antimicrob Agents Chemother 44(9):2247–2253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M (2012) Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum beta-lactamases (ESBL) in Enterobacteriaceae. Clin Microbiol Infect 18(12):1194–1204

    Article  CAS  PubMed  Google Scholar 

  23. Oliver A, Weigel LM, Rasheed JK, McGowan JE Jr, Raney P, Tenover FC (2002) Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 46(12):3829–3836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182, Table of Contents

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Böttger EC, Zbinden R, Bloemberg GV (2011) Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 49(8):2924–2932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M (2011) Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 49(8):2798–2803

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sabia C, Gargiulo R, Sarti M (2012) Evaluation of a double synergy differential test (DSDT) for differential detection of ESBL and AmpC-type beta-lactamases in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. New Microbiol 35(2):221–225

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Laurent Guillouard, Marlene Jan, and Rolande Perroux for the technical assistance. We thank Mast® Diagnostic for providing the D68C tests. This work was supported in part by a grant from the Ministère de l’Éducation Nationale, Ministère de l’Enseignement Supérieur et de la Recherche, Paris, France.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Robin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourrisson, C., Tan, R.N., Hennequin, C. et al. The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 34, 975–983 (2015). https://doi.org/10.1007/s10096-014-2305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2305-6

Keywords

Navigation