Skip to main content
Log in

Automated liquid culture system misses isoniazid heteroresistance in Mycobacterium tuberculosis isolates with mutations in the promoter region of the inhA gene

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Heteroresistance in Mycobacterium tuberculosis isolates remains the major challenge for phenotypic drug susceptibility testing (DST) methods to detect drug resistance. The aim of this study was to investigate the abilities of phenotypic DST methods to identify the isoniazid (INH) heteroresistance in M. tuberculosis. We found that the broth dilution method was able to detect INH resistance if 0.5 % resistant bacteria with mutations in the katG and oxyR-ahpC regions were present, while the detection limit ranged from 1 to 10 % for the INH-resistant strains harboring inhA mutations, which was associated with the different mutant types. Additionally, MGIT DST was able to find the recommended 1 % INH resistance due to katG mutations. In contrast, MGIT DST detected resistance in suspensions with 20 % resistant bacteria with inhA mutations. Statistical analysis revealed that the ability of the broth dilution method to detect heteroresistance was better than that of the MGIT DST (p = 0.004). When we further pairwise compared the two methods for detecting heteroresistance according to different mutant loci, the broth dilution method found more heteroresistance due to inhA mutations than MGIT DST (p = 0.001), while the differences for katG and oxyR-ahpC mutations were both not statistically significant (p > 0.05). In conclusion, our findings demonstrate that MGIT DST fails to detect INH heteroresistance in M. tuberculosis isolates with mutations in the promoter region of inhA. In addition, the broth dilution method is more sensitive than MGIT DST in finding INH heteroresistance, indicating that this method may serve as an alternative method to detect the heteroresistance of M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkvardsen DB, Svensson E, Thomsen VØ, Rasmussen EM, Bang D, Werngren J, Hoffner S, Hillemann D, Rigouts L (2013) Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis? J Clin Microbiol 51(5):1596–1599

    Article  PubMed Central  PubMed  Google Scholar 

  2. David HL (1970) Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol 20(5):810–814

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Müller B, Borrell S, Rose G, Gagneux S (2013) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29(3):160–169

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375(9728):1830–1843

    Article  PubMed  Google Scholar 

  5. Gillespie SH (2002) Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 46(2):267–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Van Deun A, Martin A, Palomino JC (2010) Diagnosis of drug-resistant tuberculosis: reliability and rapidity of detection. Int J Tuberc Lung Dis 14(2):131–140

    PubMed  Google Scholar 

  7. Van Deun A, Barrera L, Bastian I, Fattorini L, Hoffmann H, Kam KM, Rigouts L, Rüsch-Gerdes S, Wright A (2009) Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol 47(11):3501–3506

    Article  PubMed Central  PubMed  Google Scholar 

  8. World Health Organization (WHO) (2008) Anti-tuberculosis drug resistance in the world: fourth global report. WHO/HTM/TB/2008.394

  9. Folkvardsen DB, Thomsen VØ, Rigouts L, Rasmussen EM, Bang D, Bernaerts G, Werngren J, Toro JC, Hoffner S, Hillemann D, Svensson E (2013) Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol 51(12):4220–4222

    Article  PubMed Central  PubMed  Google Scholar 

  10. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430

    Article  CAS  PubMed  Google Scholar 

  11. Dalla Costa ER, Ribeiro MO, Silva MS, Arnold LS, Rostirolla DC, Cafrune PI, Espinoza RC, Palaci M, Telles MA, Ritacco V, Suffys PN, Lopes ML, Campelo CL, Miranda SS, Kremer K, da Silva PE, Fonseca Lde S, Ho JL, Kritski AL, Rossetti ML (2009) Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiol 9:39

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ando H, Kondo Y, Suetake T, Toyota E, Kato S, Mori T, Kirikae T (2010) Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 54(5):1793–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hofmann-Thiel S, van Ingen J, Feldmann K, Turaev L, Uzakova GT, Murmusaeva G, van Soolingen D, Hoffmann H (2009) Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. Eur Respir J 33(2):368–374

    Article  CAS  PubMed  Google Scholar 

  14. Pang Y, Zhou Y, Zhao B, Liu G, Jiang G, Xia H, Song Y, Shang Y, Wang S, Zhao YL (2012) Spoligotyping and drug resistance analysis of Mycobacterium tuberculosis strains from national survey in China. PLoS One 7:e32976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, Xia H, Zhou Y, Li Q, Ou X, Pang Y, Song Y, Zhao B, Zhang H, He G, Guo J, Wang Y (2012) National survey of drug-resistant tuberculosis in China. N Engl J Med 366(23):2161–2170

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization (WHO) (2009) Guidelines for surveillance of drug resistance in tuberculosis, 4th edn. WHO/HTM/TB/2009.422

  17. Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y (2013) Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57(2):893–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36(2):362–366

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46(8):2720–2722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Said HM, Kock MM, Ismail NA, Baba K, Omar SV, Osman AG, Hoosen AA, Ehlers MM (2012) Comparison between the BACTEC MGIT 960 system and the agar proportion method for susceptibility testing of multidrug resistant tuberculosis strains in a high burden setting of South Africa. BMC Infect Dis 12:369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rigouts L, Gumusboga M, de Rijk WB, Nduwamahoro E, Uwizeye C, de Jong B, Van Deun A (2013) Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations. J Clin Microbiol 51(8):2641–2645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pang Y, Liu G, Wang Y, Zheng S, Zhao YL (2013) Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis. J Microbiol Methods 93(1):32–36

    Article  CAS  PubMed  Google Scholar 

  23. Pholwat S, Stroup S, Foongladda S, Houpt E (2013) Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One 8:e57238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang Z, Wang Y, Pang Y, Kam KM (2014) Ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates. J Clin Microbiol 52(2):638–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. García de Viedma D, Alonso Rodriguez N, Andrés S, Ruiz Serrano MJ, Bouza E (2005) Characterization of clonal complexity in tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat typing. J Clin Microbiol 43(11):5660–5664

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hanekom M, Streicher EM, Van de Berg D, Cox H, McDermid C, Bosman M, Gey van Pittius NC, Victor TC, Kidd M, van Soolingen D, van Helden PD, Warren RM (2013) Population structure of mixed Mycobacterium tuberculosis infection is strain genotype and culture medium dependent. PLoS One 8(7):e70178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81301509) and National Key Research Program of China (2013ZX10003-003). We are grateful to the members of the National Tuberculosis Reference Laboratory at the Chinese Center for Disease Control and Prevention for their cooperation and technical help.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Pang or Y. Zhao.

Additional information

Zhijian Zhang and Jie Lu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Lu, J., Wang, Y. et al. Automated liquid culture system misses isoniazid heteroresistance in Mycobacterium tuberculosis isolates with mutations in the promoter region of the inhA gene. Eur J Clin Microbiol Infect Dis 34, 555–560 (2015). https://doi.org/10.1007/s10096-014-2262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2262-0

Keywords

Navigation