Skip to main content
Log in

General conformable fractional derivative and its physical interpretation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Fractional calculus is a powerful and effective tool for modelling nonlinear systems. In this paper, we introduce a class of new fractional derivative named general conformable fractional derivative (GCFD) to describe the physical world. The GCFD is generalized from the concept of conformable fractional derivative (CFD) proposed by Khalil. We point out that the term \(t^{1-\alpha }\) in CFD definition is not essential and it is only a kind of “fractional conformable function”. We also give physical and geometrical interpretations of GCFD which thus indicate potential applications in physics and engineering. It is easy to demonstrate that CFD is a special case of GCFD, then to the authors’ knowledge, so far we first give the physical and geometrical interpretations of CFD. The above work is done by a new framework named Extended Gâteaux derivative and Linear Extended Gâteaux derivative which are natural extensions of Gâteaux derivative. As an application, we discuss a scheme for solving fractional differential equations of GCFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17(2), 552–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72(6), 2859–2862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  4. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  5. Kilbas, A. A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

  6. Luchko, Y.: Operational method in fractional calculus. Fract. Calc. Appl. Anal 2(4), 463–488 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, London (1998)

    MATH  Google Scholar 

  9. Shah, S.M., Samar, R., Khan, N.M., Raja, M.A.Z.: Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 85, 1363–1376 (2016)

    Article  MathSciNet  Google Scholar 

  10. del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11(8), 3854–3864 (2004)

    Article  Google Scholar 

  11. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in d. Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Wakil, S.A., Abulwafa, E.M.: Formulation and solution of space-time fractional boussinesq equation. Nonlinear Dyn. 80(1–2), 167–175 (2015)

    Article  MathSciNet  Google Scholar 

  13. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, X.-J., Tenreiro Machado, J.A., Hristov, J.: Nonlinear dynamics for local fractional burgers equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B 27(09), 1330005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pourmahmood Aghababa, M.: No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn. 73(4), 2329–2342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kovincic, N.I., Spasic, D.T.: Dynamics of a middle ear with fractional type of dissipation. Nonlinear Dyn. 85, 2369–2388 (2016)

    Article  Google Scholar 

  18. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  19. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katugampola, U.N.: A new fractional derivative with classical properties. arXiv preprint arXiv:1410.6535, (2014)

  21. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos: an interdisciplinary. J. Nonlinear Sci. 6(4), 505–513 (1996)

    MATH  Google Scholar 

  22. Adda, F.B., Cresson, J.: About non-differentiable functions. J. Math. Anal. Appl. 263(2), 721–737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Babakhani, A., Daftardar-Gejji, V.: On calculus of local fractional derivatives. J. Math. Anal. Appl. 270(1), 66–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, Y., Yan, Y., Zhang, K.: On the local fractional derivative. J. Math. Anal. Appl. 362(1), 17–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Davison, M., Essex, C.: On the concept of local fractional differentiation. Preprint, http://www.apmaths.uwo.ca/~mdavison/_library/preprints/lfd2.pdf (2004)

  26. Xiaojun, Y., Baleanu, D.: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 17(2), 625 (2013)

    Article  Google Scholar 

  27. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chung, W.S.: Fractional newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Anderson, D.R., Ulness, D.J.: Properties of the katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56(6), 063502 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016). doi:10.1007/s10092-015-0158-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Wikipedia. https://en.wikipedia.org/wiki/gateaux_derivative (2016)

  32. Long K. Math 5311—gateaux differentials and frechet derivatives. www.math.ttu.edu/~klong/5311-spr09/diff.pdf (2009)

Download references

Acknowledgements

This work was supported partially by National Natural Science Foundation of China (under Grant No.11171238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017). https://doi.org/10.1007/s10092-017-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-017-0213-8

Keywords

Mathematic Subject Classification

Navigation