Skip to main content
Log in

A new Legendre operational technique for delay fractional optimal control problems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, new operational matrices for shifted Legendre orthonormal polynomial are derived. This polynomial is used as a basis function for developing a new numerical technique for the delay fractional optimal control problem. The fractional integral is described in the Riemann–Liouville sense, while the fractional derivative is described in the Caputo sense. The operational matrix of fractional integrals is used together with the Lagrange multiplier method for the constrained extremum in order to minimize the performance index. The problem is then reduced to a problem consists of a system of easily solvable algebraic equations. Three numerical examples of different types of delay fractional optimal control problems are implemented with their approximate solutions for confirming the high accuracy and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benson, D.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)

    Article  Google Scholar 

  2. Popovic, J.K., Spasic, D.T., Tosic, J., Kolarovic, J.L., Malti, R., Mitic, I.M., Pilipovic, S., Atanackovic, T.M.: Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Commun. Nonlinear Sci. Numer. Simul. 22, 451–471 (2015)

    Article  MathSciNet  Google Scholar 

  3. Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous madia using fractional calculus. Phil. Trans. R. Soc. A 371, 20130146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Method. Appl. Mech. Eng. 283, 196–209 (2015)

    Article  MathSciNet  Google Scholar 

  5. Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Article  Google Scholar 

  6. Sun, L., Chen, L.: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. J. Sound Vib. 335, 19–33 (2015)

    Article  Google Scholar 

  7. Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396, 656–669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vib. Contr. 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  9. Jiang, Y.-L., Ding, X.-L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)

    MATH  Google Scholar 

  11. Irandoust-Pakchin, S., Dehghan, M., Abdi-Mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    Article  MathSciNet  Google Scholar 

  13. Darzi, R., Mohammadzade, B., Mousavi, S., Beheshti, R.: Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci. 6, 79–84 (2013)

    Google Scholar 

  14. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(1), 37–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhrawy, A.H., Baleanu, D., Assas, L.: Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line. J. Vib. Control 20, 973–985 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus 129(12), 1–21 (2014)

    Article  Google Scholar 

  17. Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  Google Scholar 

  19. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  20. Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

    MathSciNet  MATH  Google Scholar 

  23. Bhrawy, A.H., Zaky, M.A., Tenreiro Machado, J.A.: Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection-dispersion equation. J. Vib. Control (2015). doi:10.1177/1077546314566835

  24. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional sub-diffusion and reaction sub-diffusion equations. J. Comput. Nonlinear Dyn. 10(2), 021019 (2015)

    Article  Google Scholar 

  25. Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219, 8042–8056 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Kayedi-Bardeh, A., Eslahchi, M., Dehghan, M.: A method for obtaining the operational matrix of fractional Jacobi functions and applications. J. Vib. Control 20, 736–748 (2014)

    Article  MathSciNet  Google Scholar 

  27. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hartley, T.T., Lorenzo, C.F.: Application of incomplete gamma functions to the initialization of fractional order systems. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814, Las Vegas (2007)

  30. Achar, N., Lorenzo, C.F., Hartley, T.T.: Initialization and the Caputo fractional derivative. NASA John H. Glenn Research Center at Lewis Field report (2003)

  31. Sabatier, J., Farges, C., Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20, 1076–1084 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ortigueira, M.D., Coito, F.J.: Initial conditions: what are we talking about? Third IFAC Workshop on Fractional Differentiation, Ankara, Turkey, 05–07 November (2008)

  33. Sabatier, J., Farges, C., Oustaloup, A.: On fractional systems state space description. J. Vib. Control 20, 1076–1084 (2014)

    Article  MathSciNet  Google Scholar 

  34. Bryson, A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control2. Blaisdell Publishing Company, Waltham (1975)

    Google Scholar 

  35. Gregory, J., Lin, C.: Constrained Optimization in the Calculus of Variations and Optimal Control Theory. Van Nostrand-Reinhold, South Carolina (1992)

    Book  MATH  Google Scholar 

  36. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  37. Zamani, M., Karimi-Ghartemani, M., Sadati, N.: FOPID controller design for robust performance using particle swarm optimization. J. Frac. Calc. Appl. Anal. 10, 169–188 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  39. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Suarez, I.J., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vib. Control 14, 1499–1511 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jelicic, Z.D., Petrovacki, N.: Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidisc. Optim. 38, 571–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Biswas, R.K., Sen, S.: Fractional optimal control problems: a pseudo-state-space approach. J. Vib. Control 17(7), 1034–1041 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yousefi, S.A., Lotfi, A., Dehghan, M.: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. J. Vib. Control 13, 1–7 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Alipour, M., Rostamy, D., Baleanu, D.: Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19, 2523–2540 (2013)

    Article  MathSciNet  Google Scholar 

  45. Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1378-1

    MathSciNet  MATH  Google Scholar 

  46. Tohidi, E., Nik, H.S.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)

    Article  MathSciNet  Google Scholar 

  47. Hosseinpour, S., Nazemi, A.: Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J. Math. Control. I. (2015). doi:10.1093/imamci/dnu058

    Google Scholar 

  48. Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S., Hafez, R.M.: An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv. Differ. Equ. (2015). doi:10.1186/s13662-014-0344-z

    MathSciNet  MATH  Google Scholar 

  49. Bhrawy, A.H., Doha, E.H., Tenreiro Machado, J.A., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control (2015). doi:10.1002/asjc.1109

  50. Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H.: A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. J. Vib. Control (2015). doi:10.1177/1077546315573916

    MATH  Google Scholar 

  51. Driver, R.D.: Ordinary and Delay Differential Equations, Applied Mathematical Sciences. Springer, New York (1977)

    Book  MATH  Google Scholar 

  52. Jamshidi, M., Wang, C.M.: A computational algorithm for large-scale nonlinear time-delay systems. IEEE Trans. Syst. Man Cybern. 14, 2–9 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. Malek-Zavarei, M., Jamshidi, M.: Time Delay Systems: Analysis, Optimization and Applications (North-Holland Systems and Control Series). Elsevier Science, New York (1987)

    MATH  Google Scholar 

  54. Witayakiattilerd, W.: Optimal regulation of impulsive fractional differential equation with delay and application to nonlinear fractional heat equation. J. Math. Res. 5(2), 94–106 (2013)

    Article  Google Scholar 

  55. Wang, Q., Chen, F., Huang, F.: Maximum principle for optimal control problem of stochastic delay differential equations driven by fractional Brownian motions. Optim. Control Appl. Meth. (2014). doi:10.1002/oca.2155

    MathSciNet  MATH  Google Scholar 

  56. Jarad, F., Abdeljawad, T., Baleanu, D.: Higher order fractional variational optimal control problems with delayed arguments. Appl. Math. Comput. 218, 9234–9240 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Safaie, E., Farahi, M.H., Farmani Ardehaie, M.: An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. Comput. Appl. Math. (2014). doi:10.1007/s40314-014-0142-y

  58. Safaie, E., Farahi, M.H.: An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials. Iran. J. Numer. Anal. Optim. 4, 77–94 (2014)

    MATH  Google Scholar 

  59. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order diffrential systems. Comput. Math. Appl. 64, 3117–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: On a representation of fractional order systems: interests for the initial condition problem. In: Proceedings of the 3rd IFAC Workshop on Fractional Diffrentiation and its Applications (FDA 08), Ankara, Turkey (2008)

  61. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lorenzo, C.F., Hartley, T.T.: Initialization in fractional order systems. In: Proceedings of the European Control Conference, Porto, Portugal, pp. 1471–1476 (2001)

  63. Lorenzo, C.F., Hartley, T.T.: Initialization of fractional differential equations: theory and application. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, DETC 2007-34814 Las Vegas, USA (2007)

  64. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: Transients of fractional-order integrator and derivatives. Signal Image Video Process. 6, 359–372 (2012)

    Article  MATH  Google Scholar 

  65. Wang, X.T.: Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials. Appl. Math. Comput. 184, 849–856 (2007)

    MathSciNet  MATH  Google Scholar 

  66. Ghomanjani, F., Farahi, M.H., Gachpazan, M.: Optimal control of time-varying linear delay systems based on the Bezier curves. Comput. Appl. Math. (2013). doi:10.1007/s40314-013-0089-4

  67. Wang, X.T.: Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions. J. Franklin Inst. 344, 941–953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the referees for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Ezz-Eldien, S.S. A new Legendre operational technique for delay fractional optimal control problems. Calcolo 53, 521–543 (2016). https://doi.org/10.1007/s10092-015-0160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-015-0160-1

Keywords

Mathematics Subject Classification

Navigation