Skip to main content
Log in

Stokes elements on cubic meshes yielding divergence-free approximations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Conforming piecewise polynomial spaces with respect to cubic meshes are constructed for the Stokes problem in arbitrary dimensions yielding exactly divergence-free velocity approximations. The derivation of the finite element pair is motivated by a smooth de Rham complex that is well-suited for the Stokes problem. We derive the stability and convergence properties of the new elements as well as the construction of reduced elements with less global unknowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, D.N., Boffi, D., Bonizzoni, F.: Finite element differential forms on curvilinear cubic meshes and their approximation properties. Numer. Math. 129(1), 1–20 (2015)

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47(2), 281–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Austin, T.M., Manteuffel, T.A., McCormick, S.: A robust multilevel approach for minimizing \(H(div)\)-dominated functionals in an \(H1\)-conforming finite element space. Numer. Linear Algebra Appl. 11(2–3), 115–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications, Lectures given at the C.I.M.E. Summer School held in Cetraro. In: Boffi, D., Gastaldi, L. (Eds.) Lecture Notes in Mathematics, 1939. Springer, Berlin, Fondazione C.I.M.E., Florence (2008)

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Buffa, A., de Falco, C., Sangalli, G.: IsoGeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 65(11–12), 1407–1422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49(2), 818–844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, J.A.: Divergence-free B-spline discretizations for viscous flows. Ph.D. Thesis, The University of Texas, Austin, Tx (2011)

  11. Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations. Math. Models Methods Appl. Sci. 23(8), 1421–1478 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations. Math. Models Methods Appl. Sci. 23(4), 671–741 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  13. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite element methods with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galvin, K.J., Linke, A., Rebholz, L.G., Wilson, N.E.: Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection. Comput. Methods Appl. Mech. Eng. 237–240, 166–176 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girault, V., Raviart, P.-A.: Finite Element Methods for the Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y., Zhang, S.: A lowest order divergence-free finite element on rectangular grids. Front. Math. China 6(2), 253–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linke, A.: Collision in a cross-shaped domain—a steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD. Comput. Methods Appl. Mech. Eng. 198(41–44), 3278–3286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monk, P.: Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  20. Nédélec, J.-C.: Mixed finite elements in \(R^3\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions, Math. Comp., to appear

  22. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Model. Math. Anal. Numer. 19(1), 111–143 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Scott, R.L., Zhang, S.: Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tai, X.-C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47(3), 2090–2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Science Foundation grant DMS-1417980 and the Alfred Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neilan.

Appendix: A calculus identity

Appendix: A calculus identity

Lemma 8

Let \(\{\varvec{a}_i\}_{i=1}^n \subset {\mathbb {R}}^n\) be a set of constant orthonormal (column) vectors.

Then there holds

$$\begin{aligned} {\mathrm{div}}\,{\varvec{v}}= \sum _{i=1}^n \frac{{\partial }{\varvec{v}}}{{\partial }\varvec{a}_i} \cdot \varvec{a}_i. \end{aligned}$$

Proof

Let A be the orthonormal matrix \(A = [\varvec{a}_1| \varvec{a}_2|\cdots |\varvec{a}_n]\in {\mathbb {R}}^{n\times n}\), and define \(\hat{{\varvec{v}}}(\hat{x}) = A^{-1} {\varvec{v}}(x) = A^T {\varvec{v}}(x)\), where \(x = A \hat{x}\). We then have \(D {\varvec{v}}(x) = A \hat{D} \hat{{\varvec{v}}}(\hat{x}) A^{T}\) by the chain rule [5].

Therefore, since the trace is invariant under similarity transforms, and since A is orthonormal, we have

$$\begin{aligned} \sum _{i=1}^n \frac{{\partial }{\varvec{v}}}{{\partial }\varvec{a}_i} \cdot \varvec{a}_i&= \sum _{i=1}^n \varvec{a}^T_i (D{\varvec{v}})\varvec{a}_i = \sum _{i=1}^n (\varvec{a}^T_i A) \hat{D} \hat{{\varvec{v}}} (\varvec{a}^T_i A)^T =\sum _{i=1}^n \frac{{\partial }\hat{v}^{(i)}}{{\partial }\hat{x}_i}\\&= \widehat{{\mathrm{div}}\,}\hat{{\varvec{v}}}= \mathrm{tr}(\hat{D}\hat{{\varvec{v}}}) = \mathrm{tr}(D{\varvec{v}}) = {\mathrm{div}}\,{\varvec{v}}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neilan, M., Sap, D. Stokes elements on cubic meshes yielding divergence-free approximations. Calcolo 53, 263–283 (2016). https://doi.org/10.1007/s10092-015-0148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-015-0148-x

Keywords

Mathematics Subject Classification

Navigation