Skip to main content
Log in

On the quality of complementary bounds for eigenvalues

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A concrete formulation of the Lehmann–Maehly–Goerisch method for semi-definite self-adjoint operators with compact resolvent is considered. Precise rates of convergence are determined in terms of how well the trial spaces capture the spectral subspace of the operator. Optimality of the choice of a shift parameter which is intrinsic to the method is also examined. The main theoretical findings are illustrated by means of a few numerical experiments involving one-dimensional Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrenechea, G., Boulton, L., Boussaïd, N.: Finite element eigenvalue enclosures for the Maxwell operator (preprint 2014). arXiv:1402.4911

  2. Barrenechea, G., Boulton, L., Boussaïd, N.: Eigenvalue enclosures (preprint 2013). arXiv:1306.5354

  3. Behnke, H.: Lower and upper bounds for sloshing frequencies. In: Inequalities and applications. International Series of Numerical Mathematics, Vol. 157, pp. 13–22. Birkhäuser, Basel (2009)

  4. Behnke, H., Mertins, U.: Bounds for eigenvalues with the use of finite elements. In: Perspectives on Enclosure Methods (Karlsruhe, 2000), pp. 119–131. Springer, Vienna (2001)

  5. Boulton, L., Hobiny, A.: On the convergence of the quadratic method (preprint 2013). arXiv:1307.0313

  6. Boulton, L., Strauss, M.: Eigenvalue enclosures and convergence for the linearized MHD operator. BIT 52(4), 801–825 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Davies, E.B., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24(3), 417–438 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goerisch, F.: Eine Verallgemeinerung eines Verfahrens von N. J. Lehmann zur Einschließung von Eigenwerten. Wiss. Z. Tech. Univ. Dres. 29, 429–431 (1980)

    MATH  MathSciNet  Google Scholar 

  10. Goerisch, F., Haunhorst, H.: Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen. Z. Angew. Math. Mech. 65(3), 129–135 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kato, T.: Perturbation Theory for Linear Operators, Vol. 132. Springer Verlag, New York (1995)

  12. Lehmann, N.J.: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. Parts I. Z. Angew. Math. Mech. 29, 341–356 (1949)

    MATH  MathSciNet  Google Scholar 

  13. Lehmann, N.J.: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. Parts II. Z. Angew. Math. Mech. 30, 1–6 (1950)

    Article  MathSciNet  Google Scholar 

  14. Maehly, H.J.: Ein neues Verfahren zur gendherten Berechnung der Eigenwerte hermitescher Operatoren. Helv. Phys. Acta 25, 547–568 (1952)

    MATH  MathSciNet  Google Scholar 

  15. Plum, M.: Bounds for eigenvalues of second-order elliptic differential operators. ZAMP 42, 848–863 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Plum, M.: Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method. ZAMP 41, 205–226 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  18. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  19. Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn. Wellesley-Cambridge Press, Wellesley (2008)

    Google Scholar 

  20. Weinberger, H.F.: Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974)

    Book  MATH  Google Scholar 

  21. Zimmermann, S., Mertins, U.: Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwend. 14(2), 327–345 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Engineering and Physical Sciences Research Council (grant number EP/I00761X/1) and King Abdulaziz University. We kindly thank the referee for so many useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyonell Boulton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulton, L., Hobiny, A. On the quality of complementary bounds for eigenvalues. Calcolo 52, 577–601 (2015). https://doi.org/10.1007/s10092-014-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-014-0131-y

Keywords

Mathematics Subject Classification

Navigation