Skip to main content
Log in

Strong convergence and stability of backward Euler–Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation

  • Published:
Calcolo Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the paper, our main aim is to investigate the strong convergence and almost surely exponential stability of an implicit numerical approximation under one-sided Lipschitz condition and polynomial growth condition on the drift coefficient, and polynomial growth condition on the diffusion coefficient. After providing almost surely exponential stability and moment boundedness for the exact solution, we show that an appropriate implicit numerical method preserves boundedness of moments, and the numerical approximation converges strongly to the true solution. Moreover, we prove that the backward Euler–Maruyama approximation can share almost surely exponential stability of the exact solution for sufficiently small step size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahar, A., Mao, X.: Stochastic delay Lotka–Volterra model. J. Math. Anal. Appl. 292, 364–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: Robust H-infinity filtering for stochastic time-delay systems with missing measurements. IEEE Trans. Signal Process. 54, 2579–2587 (2006)

    Article  Google Scholar 

  3. Huang, L., Mao, X.: SMC design for robust \(H_{\infty }\) control of uncertain stochastic delay systems. Automatica 46, 405–412 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Appleby, J.A.D., Berkolaiko, G., Rodkina, A.: Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises. Stochastics 81, 99–127 (2009)

    MATH  MathSciNet  Google Scholar 

  5. Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions and of convergent Euler-type solutions of stochastic delay differential equations. J. Comput. Appl. Math. 184, 404–427 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Greame, D.C., Higham, D.J.: Asymptotic stability of a jump-differential equation and its numerical application. SIAM J. SCI Comput. 31(2), 1141–1155 (2008)

    MathSciNet  Google Scholar 

  7. Hu, L., Gan, S., Wang, X.: Asymptotical stability of the balanced methods for stochastic jump-diffusion differential equations. J. Comput. Appl. Math. 238, 126–143 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hu, Y., Wu, F.: Stochastic Kolmogorov-type population dynamics with infinite distributed delays. Acta Appl. Math. 110, 1407–1428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, M., Cao, W., Fan, Z.: Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170, 255–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, R., Hou, Y.: Convergence and stability of numerical solutions to SDDEs with Markovian switching. Appl. Math. Comput. 175, 1080–1091 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Milstein, G.N., Schurz, P.E.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stoch. Int. J. Probab. Stoch. Proc. 85(1), 144–171 (2013)

  13. Zhou, S., Wu, F.: Convergence of numerical solutions to neutral stochastic delay differential equation with Markovian switching. J. Comput. Appl. Math. 229, 85–96 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mao, X.: Exponential stability of equidistant Euler–Maruyama approximations of stochastic differential delay equations. J. Comput. Appl. Math. 200, 297–316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mao, X.: Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl. Math. Comput. 217, 5512–5524 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Milosevic, M.: Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method. Math. Comput. Model. 54, 2235–2251 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhou, S., Fang, Z.: Numerical approximation of nonlinear neutral stochastic functional differential equation. J. Appl. Math. Comput. 41(1), 427–44 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with nonglobally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2130), 1563 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numer. Math. 51, 405–425 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2012)

    Article  MathSciNet  Google Scholar 

  21. Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Higham, D.J.: Mean-square and asymptotic stability of stochastic theta method. SIAM J. Numer. Anal. 38, 753–769 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45, 592–609 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Higham, D.J., Mao, X., Yuan, C.: Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equation. Numer. Math. 108, 295–325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pang, S., Deng, F., Mao, X.: Almost sure and moment exponential stability of Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 213, 127–141 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mao, X., Shen, Y., Gray, A.: Almost sure exponential stability of backward Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 235, 1213–1226 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wu, M., He, Y., She, J.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Autom. Control 49, 2266–2271 (2004)

    Article  MathSciNet  Google Scholar 

  28. Liu, B., David, J.: Hill, Input-to-state stability for discrete time-delay systems via the Razumikhin technique. Syst. Control Lett. 58, 567–575 (2009)

    Article  MATH  Google Scholar 

  29. Wei, G., Wang, Z., Shu, H., Fang, J.: Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances. Syst. Control Lett. 56, 623–633 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numerische Mathematik 115, 681–697 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, X., Mao, X.: The improved LaSalle-type theorems for stochastic differential delay equations. Stoch. Anal. Appl. 30, 568–589 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Luo, Q., Mao, X., Shen, Y.: New criteria on exponential stability of neutral stochastic differential delay equations. Syst. Control Lett. 55, 826–834 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mao, X.: Stability and stabilisation of stochastic differential delay equations. IET Control Theor. Appl. 1(6), 1551–566 (2007)

    Article  Google Scholar 

  34. Mao, X., Rassias, M.J.: Almost sure asymptotic estimations for solutions of stochastic differential delay equations. Int. J. Appl. Math. Stat. 9(J07), 95–109 (2007)

    MATH  MathSciNet  Google Scholar 

  35. Liptser, R.Sh., Shiryayev, A.N.: Theory of Martingales. Kluwer Academic Publishers, Dordrecht (1989)

  36. Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994)

    MATH  Google Scholar 

  37. Zhu, J., Zhang, Q., Yang, C.: Delay-dependent robust stability for Hopfield neural networks of neutral-type. Neurocomputing 72, 2609–2617 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses her sincere gratitude to three anonymous referees for their detailed comments and helpful suggestions. The financial support from the National Natural Science Foundation of China (Grant No. 11301198) and Fundamental Research Funds for the Central Universities (2011QN167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S. Strong convergence and stability of backward Euler–Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation. Calcolo 52, 445–473 (2015). https://doi.org/10.1007/s10092-014-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-014-0124-x

Keywords

Mathematics Subject Classification

Navigation