Skip to main content
Log in

Two methods for the calculation of the degree of an approximate greatest common divisor of two inexact polynomials

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The calculation of the degree d of an approximate greatest common divisor of two inexact polynomials f(y) and g(y) reduces to the determination of the rank loss of a resultant matrix, the entries of which are functions of the coefficients of f(y) and g(y). This paper considers this issue by describing two methods to calculate d, such that knowledge of the noise level imposed on the coefficients of f(y) and g(y) is not assumed. One method uses the residual of a linear algebraic equation whose coefficient matrix and right hand side vector are derived from the Sylvester resultant matrix S(f,g), and the other method uses the first principal angle between a line and a hyperplane, the equations of which are calculated from S(f,g). Computational results on inexact polynomials whose exact forms have multiple roots of high degree are shown and very good results are obtained. These results are compared with the rank loss of S(f,g) for the calculation of d, and it is shown that this method yields incorrect results for these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barnett, S.: Polynomials and Linear Control Systems. Dekker, New York (1983)

    MATH  Google Scholar 

  2. Bini, D.A., Boito, P.: Structured matrix-based methods for ϵ-gcd: Analysis and comparisons. In: Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 9–16. ACM Press, New York (2007)

    Google Scholar 

  3. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 195–207. ACM Press, New York (1995)

    Google Scholar 

  4. Dunaway, D.K.: A composite algorithm for finding zeros of real polynomials. PhD thesis, Southern Methodist University, Texas (1972)

  5. Emiris, I., Galligo, A., Lombardi, H.: Numerical univariate polynomial GCD. In: Renegar, J., Schub, M., Smale, S. (eds.) The Mathematics of Numerical Analysis. Lecture Notes in Applied Mathematics, vol. 32, pp. 323–343. AMS, Providence (1996)

    Google Scholar 

  6. Emiris, I., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J. Pure Appl. Algebra 117(118), 229–251 (1997)

    Article  MathSciNet  Google Scholar 

  7. Gao, S., Kaltofen, E., May, J., Yang, Z., Zhi, L.: Approximate factorisation of multivariate polynomials via differential equations. In: Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 167–174. ACM Press, New York (2004)

    Chapter  Google Scholar 

  8. Ghaderpanah, S., Klasa, S.: Polynomial scaling. SIAM J. Numer. Anal. 27(1), 117–135 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Jónsson, G., Vavasis, S.: Solving polynomials with small leading coefficients. SIAM J. Matrix Anal. Appl. 26, 400–414 (2005)

    Article  Google Scholar 

  11. Liang, B., Pillai, S.: Blind image deconvolution using a robust 2-D GCD approach. In: IEEE Int. Symp. Circuits and Systems, pp. 1185–1188, Hong Kong, June 9–12, 1997

    Google Scholar 

  12. Pillai, S., Liang, B.: Blind image deconvolution using a robust GCD approach. IEEE Trans. Image Process. 8(2), 295–301 (1999)

    Article  Google Scholar 

  13. Stoica, P., Söderström, T.: Common factor detection and estimation. Automatica 33(5), 985–989 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, New York (1991)

    MATH  Google Scholar 

  15. Winkler, J.R., Hasan, M.: A non-linear structure preserving matrix method for the low rank approximation of the Sylvester resultant matrix. J. Comput. Appl. Math. 234, 3226–3242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Winkler, J.R., Lao, X.Y.: The calculation of the degree of an approximate greatest common divisor of two polynomials. J. Comput. Appl. Math. 235, 1587–1603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeng, Z.: The approximate GCD of inexact polynomials. Part 1: A univariate algorithm. Preprint (2004)

  18. Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comput. 74, 869–903 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joab R. Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, J.R., Hasan, M. & Lao, X. Two methods for the calculation of the degree of an approximate greatest common divisor of two inexact polynomials. Calcolo 49, 241–267 (2012). https://doi.org/10.1007/s10092-012-0053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-012-0053-5

Keywords

Mathematics Subject Classification (2000)

Navigation