Skip to main content

Advertisement

Log in

Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: a meta-analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Although some studies have reported the associations between specific metal element intake and risk of Parkinson’s disease (PD), the associations between specific metal element intake such as iron intake and PD are still conflicted. We aimed to determine whether intake of iron, zinc, and copper increases/decreases the risk of PD. PubMed, Embase, Web of Knowledge, and Google Scholar were searched. We pooled the multivariate-adjusted relative risks (RRs) or odds ratios using random effects. Study quality was evaluated by the Newcastle–Ottawa Scale. Five studies including 126,507 individuals remained for inclusion, pooled RRs of Parkinson’s disease for moderate dietary iron intake was 1.08 (95 % CI 0.61–1.93, P = 0.787), and for high dietary iron intake was (1.03, 95 % CI 0.83–1.30, P = 0.766), respectively. The pooled RRs of Parkinson’s disease for the highest compared with the lowest dietary iron intake were 1.47 (95 % CI 1.17–1.85, P = 0.001) in western population and in males (RR = 1.43, 95 % CI 1.01–2.01, P = 0.041). The pooled RRs of Parkinson’s disease for moderate or high intake of zinc, and copper were not statistically different (P > 0.05). PD increased by 18 % (RR 1.18, 95 % CI 1.02–1.37) for western population by every 10-mg/day increment in iron intake. Higher iron intake appears to be not associated with overall PD risk, but may be associated with risk of PD in western population. Sex may be a factor influencing PD risk for higher iron intake. However, further studies are still needed to confirm the sex-selective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  2. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    Article  CAS  PubMed  Google Scholar 

  3. Kamel F (2013) Epidemiology. Paths from pesticides to Parkinson’s. Science 341:722–723

    Article  CAS  PubMed  Google Scholar 

  4. Steece-Collier K, Maries E, Kordower JH (2002) Etiology of Parkinson’s disease: genetics and environment revisited. Proc Natl Acad Sci USA 99:13972–13974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454

    Article  CAS  PubMed  Google Scholar 

  6. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  7. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Cheml Biolo 12:222–228

    Article  CAS  Google Scholar 

  8. Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  9. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    CAS  PubMed  Google Scholar 

  10. Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA et al (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825

    Article  CAS  PubMed  Google Scholar 

  11. Yu X, Du T, Song N, He Q, Shen Y, Jiang H et al (2013) Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease. Neurology 80:492–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78:633s–639s

    CAS  PubMed  Google Scholar 

  13. Lee HP, Zhu X, Liu G, Chen SG, Perry G, Smith MA et al (2010) Divalent metal transporter, iron, and Parkinson’s disease: a pathological relationship. Cell Res 20:397–399

    Article  CAS  PubMed  Google Scholar 

  14. Sandstrom B, Arvidsson B, Cederblad A, Bjorn-Rasmussen E (1980) Zinc absorption from composite meals. I. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. Am J Clin Nutr 33:739–745

    CAS  PubMed  Google Scholar 

  15. Johnson CC, Gorell JM, Rybicki BA, Sanders K, Peterson EL (1999) Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 28:1102–1109

    Article  CAS  PubMed  Google Scholar 

  16. Logroscino G, Gao X, Chen H, Wing A, Ascherio A (2008) Dietary iron intake and risk of Parkinson’s disease. Am J Epidemiol 168:1381–1388

    Article  PubMed Central  PubMed  Google Scholar 

  17. Miyake Y, Tanaka K, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y et al (2011) Dietary intake of metals and risk of Parkinson’s disease: a case–control study in Japan. J Neurol Sci 306:98–102

    Article  CAS  PubMed  Google Scholar 

  18. Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H (2003) Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 60:1761–1766

    Article  CAS  PubMed  Google Scholar 

  19. Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H (2009) Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat Disord 15:47–52

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D (2006) Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 63:530–538

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  22. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M (2015) The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford_web.ppt. Accessed Apr 12 2015

  23. Etminan M, Gill SS, Samii A (2005) Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 4:362–365

    Article  CAS  PubMed  Google Scholar 

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed Central  PubMed  Google Scholar 

  25. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309

    CAS  PubMed  Google Scholar 

  26. Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose-response data. Stata J 6:40

    Google Scholar 

  27. Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose–response data. Epidemiology 4:218–228

    Article  CAS  PubMed  Google Scholar 

  28. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629-634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  30. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  31. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  32. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  33. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  34. Blanco-Rojo R, Toxqui L, López-Parra AM, Baeza-Richer C, Pérez-Granados AM, Arroyo-Pardo E et al (2014) Influence of diet, menstruation and genetic factors on iron status: a cross-sectional study in Spanish women of childbearing age. Int J Mol Sci 15:4077–4087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Coad J, Conlon C (2011) Iron deficiency in women: assessment, causes and consequences. Curr Opin Clin Nutr Metab Care 14:625–634

    Article  CAS  PubMed  Google Scholar 

  36. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72:893–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the scientific editors at Impactys (www.impactys.com) for editing and proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xie.

Ethics declarations

Conflict of interest

None.

Additional information

P. F. Cheng and J. Yu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Yu, J., Huang, W. et al. Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: a meta-analysis. Neurol Sci 36, 2269–2275 (2015). https://doi.org/10.1007/s10072-015-2349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2349-0

Keywords

Navigation