Skip to main content
Log in

Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Hippocampus learning disturbance is a major symptom of patients with seizure, hence hippocampal dysfunction has essential role in worsening the disease. Hippocampal formation includes neurons and myelinated fibers that are necessary for acquisition and consolidation of memory, long-term potentiation and learning activity. The exact mechanism by which seizure can decrease memory and learning activity of hippocampus remains unknown. In the present study, electrical kindling-induced learning deficit in rats was evaluated by Morris water maze (MWM) test. The hippocampus was removed and changes in neurons and myelin sheaths around hippocampal fibers were investigated using histological and immunohistochemical methods. Demyelination was assessed by luxol fast blue staining, and immunohistological staining of myelin-binding protein (MBP). The TUNEL assay was used for evaluation of neuronal apoptosis and the glial fibriliary acetic protein (GFAP) was used for assessment of inflammatory reaction. The results indicated that electrical kindling of hippocampus could induce deficiency in spatial learning and memory as compared to control group. In addition, electrical kindling caused damage to the myelin sheath around hippocampal fibers and produced vast demyelination. Furthermore, an increase in the number of apoptotic cells in hippocampal slices was observed. In addition, inflammatory response was higher in kindled animals as compared to the control group. The results suggested that the decrease in learning and memory in kindled animals is likely due to demyelination and augmentation in apoptosis rate accompanied by inflammatory reaction in hippocampal neurons of kindled rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25(3):295–330

    Article  PubMed  CAS  Google Scholar 

  2. Racine R (1978) Kindling: the first decade. Neurosurgery 3(2):234

    Article  PubMed  CAS  Google Scholar 

  3. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253(5026):1380

    Article  PubMed  CAS  Google Scholar 

  4. Genkova-Papazova MG, Lazarova-Bakarova MB (1995) Pentylenetetrazole kindling impairs long-term memory in rats. Eur Neuropsychopharm 5(1):53–56

    Article  CAS  Google Scholar 

  5. Beldhuis HJA, Everts HGJ, Van der Zee EA, Luiten PGM, Bohus B (1992) Amygdala kindling induced seizures selectively impair spatial memory. 1. Behavioral characteristics and effects on hippocampal neuronal protein kinase C isoforms. Hippocampus 2(4):397–409

    Article  PubMed  CAS  Google Scholar 

  6. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  PubMed  CAS  Google Scholar 

  7. Calida DM, Constantinescu C, Purev E, Zhang GX, Ventura ES, Lavi E, Rostami A (2001) Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice. J Immunol 166(2):723–726

    PubMed  CAS  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  9. Sherafat M, Heibatollahi M, Mongabadi S, Moradi F, Javan M, Ahmadiani A Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination.1–10

  10. Sutula T, Lauersdorf S, Lynch M, Jurgella C, Woodard A (1995) Deficits in radial arm maze performance in kindled rats: evidence for long-lasting memory dysfunction induced by repeated brief seizures. J Neurosci 15(12):8295

    PubMed  CAS  Google Scholar 

  11. Mortazavi F, Ericson M, Story D, Hulce VD, Dunbar GL (2005) Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav 7(4):629–638

    Article  PubMed  Google Scholar 

  12. Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natal Acad Sci USA 94(19):10432

    Article  CAS  Google Scholar 

  13. Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527(1):1–6

    Article  PubMed  CAS  Google Scholar 

  14. Zhang LX, Smith MA, Li XL, Weiss SRB, Post RM (1998) Apoptosis of hippocampal neurons after amygdala kindled seizures. Mol Brain Res 55(2):198–208

    Article  PubMed  CAS  Google Scholar 

  15. Khurgel M, Ivy GO (1996) Astrocytes in kindling: relevance to epileptogenesis. Epilepsy Res 26(1):163–175

    Article  PubMed  CAS  Google Scholar 

  16. Torre ER, Lothman E, Steward O (1993) Glial response to neuronal activity: GFAP-mRNA and protein levels are transiently increased in the hippocampus after seizures. Brain Res 631(2):256–264

    Article  PubMed  CAS  Google Scholar 

  17. Stringer JL (1996) Repeated seizures increase GFAP and vimentin in the hippocampus. Brain Res 717(1–2):147–153

    Article  PubMed  CAS  Google Scholar 

  18. Steward O, Torre ER, Tomasulo R, Lothman E (1991) Neuronal activity up-regulates astroglial gene expression. Proc Natal Acad Sci USA 88(15):6819

    Article  CAS  Google Scholar 

  19. Tu B, Bazan NG (2003) Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol 179(2):167–175

    Article  PubMed  CAS  Google Scholar 

  20. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB (1995) Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest 95(4):1669–1675

    Article  PubMed  CAS  Google Scholar 

  21. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 91(25):12013–12017

    Article  PubMed  CAS  Google Scholar 

  22. Raz A, Wyche A, Siegel N, Needleman P (1988) Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J Biol Chem 263(6):3022–3028

    PubMed  CAS  Google Scholar 

  23. Almer G, Teismann P, Stevic Z, Halaschek-Wiener J, Deecke L, Kostic V, Przedborski S (2002) Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 58(8):1277–1279

    Article  PubMed  CAS  Google Scholar 

  24. Ogorochi T, Narumiya S, Mizuno N, Yamashita K, Miyazaki H, Hayaishi O (1984) Regional distribution of prostaglandins D2, E2, and F2 alpha and related enzymes in postmortem human brain. J Neurochem 43(1):71–82

    Article  PubMed  CAS  Google Scholar 

  25. O’Neill P, Walton S, Foy PM, Shaw MD (1992) Role of prostaglandins in delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 30(1):17–22

    Article  PubMed  Google Scholar 

  26. Shohami E, Shapira Y, Sidi A, Cotev S (1987) Head injury induces increased prostaglandin synthesis in rat brain. J Cereb Blood Flow Metab 7(1):58–63

    Article  PubMed  CAS  Google Scholar 

  27. Yang SY, Gao ZX (1999) Determination and clinical significance of plasma levels of prostaglandins in patients with acute brain injury. Surg Neurol 52(3):238–245

    Article  PubMed  CAS  Google Scholar 

  28. Spielman L, Winger D, Ho L, Aisen PS, Shohami E, Pasinetti GM (2002) Induction of the complement component C1qB in brain of transgenic mice with neuronal overexpression of human cyclooxygenase-2. Acta Neuropathol 103(2):157–162

    Article  PubMed  CAS  Google Scholar 

  29. Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K (2006) Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 56(1):103–110

    Article  PubMed  CAS  Google Scholar 

  30. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63(9):901–910

    PubMed  CAS  Google Scholar 

  31. Geurts JJG, Bö L, Roosendaal SD, Hazes T, Daniëls R, Barkhof F, Witter MP, Huitinga I, van der Valk P (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66(9):819–827

    Article  PubMed  Google Scholar 

  32. Kovari E, Gold G, Herrmann FR, Canuto A, Hof PR, Michel JP, Bouras C, Giannakopoulos P (2004) Cortical microinfarcts and demyelination significantly affect cognition in brain aging. Stroke 35(2):410–414

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Naderi.

Additional information

We would like to mention that M. A. Sherafat and A. Ronaghi have equal contribution as first author in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherafat, M.A., Ronaghi, A., Ahmad-Molaei, L. et al. Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms. Neurol Sci 34, 883–890 (2013). https://doi.org/10.1007/s10072-012-1142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1142-6

Keywords

Navigation