Skip to main content
Log in

Evidence of self-organization in a gregarious land-dwelling crustacean (Isopoda: Oniscidea)

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

How individuals modulate their behavior according to social context is a major issue in the understanding of group initiation, group stability and the distribution of individuals. Herein, we investigated the mechanisms of aggregation behavior in Porcellio scaber, a terrestrial isopod member of the Oniscidea, a unique and common group of terrestrial crustaceans. We performed binary choice tests using shelters with a wide range of population densities (from 10 to 150 individuals). First, the observed collective choices of shelters strengthen the demonstration of a social inter-attraction in terrestrial isopods; especially, in less than 10 min, the aggregation reaches its maximal value, and in less than 100 s, the collective choice is made, i.e., one shelter is selected. In addition, the distribution of individuals shows the existence of (1) quorum rules, by which an aggregate cannot emerge under a threshold value of individuals, and (2) a maximum population size, which leads to a splitting of the populations. These collective results are in agreement with the individual’s probability of joining and leaving an aggregate attesting to a greater attractiveness of the group to migrants and greater retention of conspecifics with group size. In this respect, we show that the emergence of aggregation in terrestrial isopods is based on amplification mechanisms. And lastly, our results indicate how local cues about the spatial organization of individuals may favor this emergence and how individuals spatiotemporally reorganize toward a compact form reducing the exchange with the environment. This study provides the first evidence of self-organization in a gregarious crustacean, similar as has been widely emphasized in gregarious insects and eusocial insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allee WC (1926) Studies in animal aggregations: causes and effects of bunching in land isopods. J Exp Zool 45:255–277

    Article  Google Scholar 

  • Allee WC (1931) Animal aggregations—a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Amé JM, Halloy J, Rivault C, Detrain C, Deneubourg J-L (2006) Collegial decision making based on social amplification leads to optimal group formation. Proc Natl Acad Sci USA 103:5835–5840

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev Camb Philos Soc 76:211–237

    Article  PubMed  CAS  Google Scholar 

  • Beauché F, Richard F-J (2013) The Best Timing of Mate Search in Armadillidium vulgare (Isopoda, Oniscidea). PLoS One 8:e57737

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrill M (1975) Gregarious behavior of juveniles of the spiny lobster, Panulirus argus (Crustacea: Decapoda). Bull Mar Sci 25:515–522

    Google Scholar 

  • Bonabeau E, Théraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193

    Article  PubMed  CAS  Google Scholar 

  • Boulay J, Devigne C, Gosset D, Charabidze D (2013) Evidence of active aggregation behaviour in Lucilia sericata larvae and possible implication of a conspecific mark. Anim Behav 85:1191–1197

    Article  Google Scholar 

  • Broly P, Deneubourg J-L (2015) Behavioural contagion explains group cohesion in a social crustacean. PLoS Comput Biol 11:e1004290. doi:10.1371/journal.pcbi.1004290

    Article  PubMed  PubMed Central  Google Scholar 

  • Broly P, Mullier R, Deneubourg J-L, Devigne C (2012) Aggregation in woodlice: social interaction and density effects. ZooKeys 176:133–144

    Article  PubMed  Google Scholar 

  • Broly P, Deneubourg J-L, Devigne C (2013) Benefits of aggregation in woodlice: a factor in the terrestrialization process? Insectes Soc 60:419–435

    Article  Google Scholar 

  • Broly P, Devigne L, Deneubourg J-L, Devigne C (2014) Effects of group size on aggregation against desiccation in woodlice (Isopoda: Oniscidea). Physiol Entomol 39:165–171

  • Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2003) Self-organization in biological systems, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Canonge S, Deneubourg J-L, Sempo G (2011) Group living enhances individual resources discrimination: the use of public information by cockroaches to assess shelter quality. PLoS One 6:e19748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conradt L, Roper TJ (2005) Consensus decision making in animals. Trends Ecol Evol 20:449–456

    Article  PubMed  Google Scholar 

  • Costa JT (2006) The other insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Couzin ID, Franks NR (2003) Self-organized lane formation and optimized traffic flow in army ants. Proc R Soc Lond B 270:139–146

    Article  CAS  Google Scholar 

  • de Meester N, Bonte D (2010) Information use and density-dependent emigration in an agrobiont spider. Behav Ecol 21:992–998

    Article  Google Scholar 

  • Deneubourg J-L, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evol 1:295–311

    Article  Google Scholar 

  • Depickère S, Fresneau D, Deneubourg J-L (2004) A basis for spatial and social patterns in ant species: dynamics and mechanisms of aggregation. J Insect Behav 17:81–97

    Article  Google Scholar 

  • Detrain C, Deneubourg J-L (2008) Collective decision-making and foraging patterns in ants and honeybees. Adv Insect Physiol 35:123–173

    Article  Google Scholar 

  • Devigne C, Broly P, Deneubourg J-L (2011) Individual preferences and social interactions determine the aggregation of woodlice. PLoS One 6:e17389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Annu Rev Entomol 57:123–141

    Article  PubMed  CAS  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Durieux D, Fassotte B, Deneubourg J-L, Brostaux Y, Vandereycken A, Joie E, Haubruge E, Verheggen FJ (2014) Aggregation behavior of Harmonia axyridis under non-wintering conditions. Insect Sci. doi:10.1111/1744-7917.12144

    PubMed  Google Scholar 

  • Eggleston DB, Lipcius RN (1992) Shelter selection by spiny lobster under variable predation risk, social conditions, and shelter size. Ecology 73:992–1011

    Article  Google Scholar 

  • Evans SR, Finnie M, Manica A (2007) Shoaling preferences in decapod crustacea. Anim Behav 74:1691–1696

    Article  Google Scholar 

  • Farr JA (1978) Orientation and social behavior in the supralittoral isopod Ligia exotica (Crustacea: Oniscoidea). Bull Mar Sci 28:659–666

    Google Scholar 

  • Friedlander CP (1964) Thigmokinesis in woodlice. Anim Behav 12:164–174

    Article  Google Scholar 

  • Gongalsky KB, Savin FA, Pokarzhevskii AD, Filimonova ZV (2005) Spatial distribution of isopods in an oak–beech forest. Eur J Soil Biol 41:117–122

    Article  Google Scholar 

  • Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS (2011) Transition from marine to terrestrial ecologies: changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Struct Dev 40:244–257

    Article  PubMed  CAS  Google Scholar 

  • Hassall M, Edwards DP, Carmenta R, Derhé MA, Moss A (2010) Predicting the effect of climate change on aggregation behaviour in four species of terrestrial isopods. Behaviour 147:151–164

    Article  Google Scholar 

  • Jeanson R, Deneubourg J-L (2007) Conspecific attraction and shelter selection in gregarious insects. Am Nat 170:47–58

    Article  PubMed  Google Scholar 

  • Jeanson R, Deneubourg J-L (2009) Positive feedback, convergent collective patterns and social transitions in arthropods. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to socio-complexity. Harvard University Press, Cambridge, pp 460–482

    Google Scholar 

  • Jeanson R, Rivault C, Deneubourg J-L, Blanco S, Fournier R, Jost C, Theraulaz G (2005) Self-organized aggregation in cockroaches. Anim Behav 69:169–180

    Article  Google Scholar 

  • Jeanson R, Dussutour A, Fourcassié V (2012) Key factors for the emergence of collective decision in invertebrates. Front Neurosci 6:121. doi:10.3389/fnins.2012.00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen GC (1991) Competency, settling behavior, and postsettlement aggregation by porcelain crab megalopae (Anomura: Porcellanidae). J Exp Mar Biol Ecol 153:49–61

    Article  Google Scholar 

  • Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev 69:187–206

    Article  PubMed  CAS  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Lioni A, Deneubourg J-L (2004) Collective decision through self-assembling. Naturwissenschaften 91:237–241

    Article  PubMed  CAS  Google Scholar 

  • Lioni A, Sauwens C, Theraulaz G, Deneubourg J-L (2001) Chain formation in Oecophylla longinoda. J Insect Behav 14:679–696

    Article  Google Scholar 

  • Morrell LJ, Romey WL (2008) Optimal individual positions within animal groups. Behav Ecol 19:909–919

    Article  Google Scholar 

  • Nilsen C, Paige J, Warner O, Mayhew B, Sutley R, Lam M et al (2013) Social aggregation in pea aphids: experiment and random walk modeling. PLoS One 8:e83343

    Article  PubMed  PubMed Central  Google Scholar 

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74:157–165

    Article  Google Scholar 

  • Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation: complex systems. Science 284:99–101

    Article  PubMed  CAS  Google Scholar 

  • Quadros AF, Araujo PB (2008) An assemblage of terrestrial isopods (Crustacea) in southern Brazil and its contribution to leaf litter processing. Rev Bras Zool 25:58–66

    Article  Google Scholar 

  • Ringo J, Dowse H (2012) Pupation site selection in four drosophilid species: aggregation and contact. J Insect Behav 25:578–589

    Article  Google Scholar 

  • Robert M, Dagorn L, Lopez J, Moreno G, Deneubourg J-L (2013) Does social behavior influence the dynamics of aggregations formed by tropical tunas around floating objects? An experimental approach. J Exp Mar Biol Ecol 440:238–243

    Article  Google Scholar 

  • Seeley TD (2002) When is self-organization used in biological systems? Biol Bull 202:314–318

    Article  PubMed  Google Scholar 

  • Sempo G, Canonge S, Detrain C, Deneubourg J-L (2009) Complex dynamics based on a quorum: decision-making process by cockroaches in a patchy environment. Ethology 115:1150–1161

    Article  Google Scholar 

  • Sumpter DJ (2006) The principles of collective animal behaviour. Philos Trans R Soc B 361:5–22

    Article  CAS  Google Scholar 

  • Sumpter DJ, Pratt SC (2009) Quorum responses and consensus decision making. Philos Trans R Soc B 364:743–753

    Article  Google Scholar 

  • Sutton SL (1972) Woodlice. Ginn & Company, London

    Google Scholar 

  • Tajovský K, Hošek J, Hofmeister J, Wytwer J (2012) Assemblages of terrestrial isopods (Isopoda, Oniscidea) in a fragmented forest landscape in Central Europe. ZooKeys 176:189–198

    Article  PubMed  Google Scholar 

  • Takeda N (1984) The aggregation phenomenon in terrestrial isopods. In: Sutton SL, Holdich DM (eds) The biology of terrestrial isopods: symposium of the zoological society of london. Oxford University Press, Oxford, pp 381–404

    Google Scholar 

  • Theraulaz G, Bonabeau E, Nicolis SC, Solé RV, Fourcassié V, Blanco S et al (2002) Spatial patterns in ant colonies. Proc Natl Acad Sci USA 99:9645–9649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Theraulaz G, Gautrais J, Camazine S, Deneubourg J-L (2003) The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philos Trans R Soc A 361:1263–1282

    Article  Google Scholar 

  • Thiel M (2011) The evolution of sociality: peracarid crustaceans as model organisms. In: Asakura A (ed) New frontiers in crustacean biology. Proceedings of the TCS summer meeting, Tokyo, 20–24 September 2009. Brill Academic Publishers, Leiden, pp 285–297

  • Topp W, Kappes H, Kulfan J, Zach P (2006) Distribution pattern of woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovakia). Soil Biol Biochem 38:43–50

    Article  CAS  Google Scholar 

  • Valone TJ (2007) From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav Ecol Sociobiol 62:1–14

    Article  Google Scholar 

  • Wagner RH, Danchin E (2003) Conspecific copying: a general mechanism of social aggregation. Anim Behav 65:405–408

    Article  Google Scholar 

  • Warburg MR (1964) The response of isopods towards temperature, humidity and light. Anim Behav 12:175–186

    Article  Google Scholar 

  • Warburg MR (1968) Behavioral adaptations of terrestrial isopods. Amer Zool 8:545–559

    Article  Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Article  PubMed  Google Scholar 

  • Zirbes L, Brostaux Y, Mescher M, Jason M, Haubruge E, Deneubourg J-L (2012) Self-assemblage and quorum in the earthworm Eisenia fetida (Oligochaete, Lumbricidae). PLoS One 7:e32564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

P. Broly is supported by a FRIA grant (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture, FRS-FNRS). J-L. Deneubourg is a Senior Research Associate at the FRS-FNRS. Authors thank the American Journal Experts for revising language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Broly.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standard

The experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broly, P., Mullier, R., Devigne, C. et al. Evidence of self-organization in a gregarious land-dwelling crustacean (Isopoda: Oniscidea). Anim Cogn 19, 181–192 (2016). https://doi.org/10.1007/s10071-015-0925-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-015-0925-6

Keywords

Navigation