Skip to main content
Log in

Predators in training: operant conditioning of novel behavior in wild Burmese pythons (Python molurus bivitattus)

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Large pythons and boas comprise a group of animals whose anatomy and physiology are very different from traditional mammalian, avian and other reptilian models typically used in operant conditioning. In the current study, investigators used a modified shaping procedure involving successive approximations to train wild Burmese pythons (Python molurus bivitattus) to approach and depress an illuminated push button in order to gain access to a food reward. Results show that these large, wild snakes can be trained to accept extremely small food items, associate a stimulus with such rewards via operant conditioning and perform a contingent operant response to gain access to a food reward. The shaping procedure produced robust responses and provides a mechanism for investigating complex behavioral phenomena in massive snakes that are rarely studied in learning research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almli L, Burghardt G (2006) Environmental enrichment alters the behavioral profile of ratsnakes (Elaphe). J Appl Anim Welf Sci 9(2):85–109

    Article  CAS  PubMed  Google Scholar 

  • Andreadis PT, Burghardt GM (2005) Unlearned appetite controls: watersnakes (Nerodia) take smaller meals when they have the choice. J Comp Psychol 119(3):304–310

    Article  PubMed  Google Scholar 

  • Arnold SJ (1993) Foraging theory and prey-size–predator-size relations in snakes. In: Seigel RA, Collins JT (eds) Snakes ecology and behavior. McGraw Hill, New York, pp 87–115

    Google Scholar 

  • Begun D, Kubie J, O’Keefe M, Halpern M (1988) Conditioned discrimination of airborne odorants by garter snakes. J Comp Psychol 102(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Bullock T, Diecke F (1956) Properties of an infrared receptor. J Physiol 134:47–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burghardt GM, Layne D (1995) Effects of ontogenetic processes and rearing conditions. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles. Chapman and Hall, London, pp 165–185

    Chapter  Google Scholar 

  • Crawford F, Bartlett C (1966) Runway behavior of the gray rat snake with food and water reinforcement. Psychon Sci 4:99–100

    Article  Google Scholar 

  • Dalland JI (1970) The measurement of ultrasonic hearing. In: Stebbins WC (ed) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 21–40

    Chapter  Google Scholar 

  • Dorcas ME, Wilson JD, Reed RN, Snow RW, Rochford MR, Miller MA, Meshaka WE, Andreadis PT, Mazzotti FJ, Romagosa CM, Hart KM (2012) Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc Nat Acad Sci 109:2418–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dove CJ, Snow RW, Rochford MR, Mazotti FJ (2011) Birds consumed by the invasive Burmese python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J Ornithol 123:126–131

    Article  Google Scholar 

  • Ebert J, Müller S, Westhoff G (2007) Behavioural examination of the infrared sensitivity of ball pythons. J Zool 272:340–347

    Article  Google Scholar 

  • Gans C, Krakaure T, Paganelli CV (1968) Water loss in snakes: interspecific and intraspecific variability. Comp Biochem Physiol 27:747–761

    Article  Google Scholar 

  • Gavish L (1979) Conditioned-response of snakes (Malpolon monspessulanum) to light. J Herpetol 13:357–359

    Article  Google Scholar 

  • Gould J, Gould C (1994) The Animal Mind. W. H. Freeman, New York

    Google Scholar 

  • Grace M, Matsushita A (2007) Neural correlates of complex behavior: vision and infrared imaging in boas and pythons. In: Henderson RW, Schuett G (eds) Biology of the boas, pythons and related taxa. Eagle Mountain, Eagle Mountain, pp 271–285

    Google Scholar 

  • Gregory PT (2013) Once bitten twice shy: does previous experience influence behavioural decisions of snakes in encounters with predators? Ethology 119:919–925

    Google Scholar 

  • Halpern M (1992) Nasal chemical senses in reptiles: structure and function. In: Gans C, Crews D (eds) Biology of the reptilia vol 18. University of Chicago Press, Chicago, pp 423–523

    Google Scholar 

  • Halpern M, Halpern J, Erichsen E, Borghjid S (1997) The role of nasal chemical senses in garter snake responses to airborne odor cues from prey. J Comp Psychol 111:251–260

    Article  CAS  PubMed  Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223

    Article  CAS  PubMed  Google Scholar 

  • Haverly J, Kardong K (1996) Sensory deprivation effects on the predatory behavior of the rattlesnake, Crotalus viridis oreganus. Copeia 1996:419–428

    Article  Google Scholar 

  • Holtzman D, Harris T, Aranguran G, Bostock E (1999) Spatial learning of an escape task by young corn snakes (Elaphe guttata guttata). Anim Behav 57(1):51–60

    Article  PubMed  Google Scholar 

  • Kellogg W, Pomeroy W (1936) Maze learning in water snakes. J Comp Psychol 21:275–295

    Article  Google Scholar 

  • Kleinginna P (1970) Operant conditioning in the indigo snake. Psychon Sci 18:53–55

    Article  Google Scholar 

  • Kluge AG (1991) Boine phylogeny and research cycles. Miscellaneous Publications, Musem of Zoology, University of Michigan

  • Kluge AG (1993) Aspidites and the phylogeny of pythonine snakes. Rec Aust Mus (Suppl) 19:1–77

    Article  Google Scholar 

  • Krochmal A, Bakken G (2003) Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J Exp Biol 206:2539–2545

    Article  PubMed  Google Scholar 

  • Kubie J, Halpern M (1975) Laboratory observations on trailing behavior in garter snakes. J Comp Physiol Psychol 89:667–674

    Article  CAS  PubMed  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, New York

    Google Scholar 

  • Molenaar G (1992) Anatomy and physiology of infrared sensitivity of snakes. In: Gans C, Ulinski P (eds) Biology of the reptilia, vol 17. University of Chicago Press, Chicago, pp 367–453

    Google Scholar 

  • Murphy JC, Henderson RW (1997) Tales of giant snakes: a historical natural history of anacondas and pythons. Krieger, Malabar

    Google Scholar 

  • Noble GK, Schmidt A (1937) The structure and function of the facial and labial pits of snakes. Proc Am Philos Soc 77:263–288

    Google Scholar 

  • Noonan BP, Chippindale PT (2006) Dispersal and vicariance: the complex evolutionary history of boid snakes. Mol Phylogenet Evol 40:347–358

    Article  CAS  PubMed  Google Scholar 

  • Overgaard J, Andersen JB, Wang T (2002) The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation. Physiol Biochem Zool 75(4):360–368

    Article  PubMed  Google Scholar 

  • Pittman SE, Hart KM, Cherkiss MS, Snow RW, Fujisaki I, Smith BJ, Mazotti FJ, Dorcas ME (2014) Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes. Biol Lett 10:20140040

    Article  PubMed  Google Scholar 

  • Pope CH (1961) The giant snakes. Alfred A Knopf, New York

    Google Scholar 

  • Powell R (1972) Operant conditioning in the common crow (Corvus brachyrhynchos). Auk 89:738–742

    Article  Google Scholar 

  • Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson MN (2008) Python phylogenetics: inference from morphology and mitochondrial DNA. Biol J Linn Soc 93:603–619

    Article  Google Scholar 

  • Reed RN (2005) An ecological risk assessment of nonnative boas and pythons as potentially invasive species in the United States. Risk Anal 25:753–766

    Article  PubMed  Google Scholar 

  • Reiserer RS (2002) Stimulus control of caudal luring and other feeding responses: a program for research on visual perception in vipers. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain, Eagle Mountain, pp 361–383

    Google Scholar 

  • Safer A, Grace M (2004) Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets. Behav Brain Res 154:55–61

    Article  PubMed  Google Scholar 

  • Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211:3767–3774

    Article  PubMed  Google Scholar 

  • Sillman A, Carver J, Loew E (1999) The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). J Exp Biol 202:1931–1938

    PubMed  Google Scholar 

  • Snow R, Brien M, Cherkiss M, Wilkins L, Mazotti F (2007) Dietary habits of the Burmese python, Python molurus bivittatus, from Everglades National Park, FL. Herpetol Bull 101:5–7

    Google Scholar 

  • Starck JM, Beese K (2001) Structural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204(2):325–335

    CAS  PubMed  Google Scholar 

  • Takemasa T, Nakamura K (1935) A study of learning using snakes. Educ Psychol Res 1935:575–581

    Google Scholar 

  • Thompson T, Sturm T (1965) Visual-reinforcer color and operant behavior in Siamese fighting fish. J Exp Anal Behav 8:341–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker M, Bitterman M (1985) Conditioned responding to magnetic fields by honeybees. J Comp Physiol A 157:67–71

    Article  Google Scholar 

  • Walker M, Diebel C, Haugh C, Pankhurst P, Montgomery J, Green C (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    Article  CAS  PubMed  Google Scholar 

  • Walls GL (1940) Ophthalmological implications for the early history of snakes. Copeia 1940:1–8

    Article  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. The Cranebrook Institute of Science, Michigan

    Book  Google Scholar 

  • Wilson D (2007) Foraging ecology and diet of an ambush predator: the green python (Morelia viridis). In: Henderson RW, Powell R (eds) Biology of boas and pythons. Eagle, Eagle Mountain, pp 141–150

    Google Scholar 

  • Wolfe D, Browne C (1940) A learning experiment with snakes. Copeia 1940:134

    Article  Google Scholar 

  • Yager D, Thorpe S (1970) Investigations in goldfish color vision. In: Stebbins WC (ed) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 259–275

    Chapter  Google Scholar 

  • Zug GR (1993) Herpetology. An introductory biology of amphibians and reptiles. Academic Press, San Diego

Download references

Acknowledgments

We thank the National Science Foundation (grant IOS 1052200 to MSG), Animal Behavior Society, the Society for Integrative and Comparative Biology, Herpetologists’ League and Sigma Xi for financial support. Thanks to J. Fobb and R. Snow for supplying pythons, L. Buist, G. Emer and D. Emer for mechanical support in designing a prototype apparatus, H. DeMarr for training support and C. Stewart for animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Grace.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10071_2014_797_MOESM1_ESM.pdf

Supplementary material Online Resource 1. A Burmese python performs the operant behavior chain. It assumes an observation position, waits for light illumination, pushes a button and is rewarded with access to the food reservoir where it retrieves the prey item. (PDF 225 kb)

10071_2014_797_MOESM2_ESM.pdf

Supplementary material Online Resource 2. Individual mean response latencies (±SE) during pre-training, shaping and discriminated operant (D.O.) training phases performed by five sub-adult pythons (SA, S4, S6, S11, S12). There were no significant differences in mean response latency between individual pythons (P>0.05). (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emer, S.A., Mora, C.V., Harvey, M.T. et al. Predators in training: operant conditioning of novel behavior in wild Burmese pythons (Python molurus bivitattus). Anim Cogn 18, 269–278 (2015). https://doi.org/10.1007/s10071-014-0797-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-014-0797-1

Keywords

Navigation