Skip to main content
Log in

Visual discrimination of species in dogs (Canis familiaris)

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

In most social interactions, an animal has to determine whether the other animal belongs to its own species. This perception may be visual and may involve several cognitive processes such as discrimination and categorization. Perceptual categorization is likely to be involved in species characterized by a great phenotypic diversity. As a consequence of intensive artificial selection, domestic dogs, Canis familiaris, present the largest phenotypic diversity among domestic mammals. The goal of our study was to determine whether dogs can discriminate any type of dog from other species and can group all dogs whatever their phenotypes within the same category. Nine pet dogs were successfully trained through instrumental conditioning using a clicker and food rewards to choose a rewarded image, S+, out of two images displayed on computer screens. The generalization step consisted in the presentation of a large sample of paired images of heads of dogs from different breeds and cross-breeds with those of other mammal species, included humans. A reversal phase followed the generalization step. Each of the nine subjects was able to group all the images of dogs within the same category. Thus, the dogs have the capacity of species discrimination despite their great phenotypic variability, based only on visual images of heads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi I, Kuwahata H, Fujita K (2007) Dogs recall their owner’s face upon hearing the owner’s voice. Anim Cogn 10(1):17–21

    Article  PubMed  Google Scholar 

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Bates D, Maechler M (2010) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-35

  • Beerda B, Schilder MBH, van Hooff JARAM, de Vries HW (1997) Manifestations of chronic and acute stress in dogs. Appl Anim Behav Sci 52(3):307–319

    Google Scholar 

  • Bovet D (1999) Capacités d’abstraction et de catégorisation: etude comparative chez le babouin et l’enfant. Dissertation. University of Aix-marseille, France

    Google Scholar 

  • Brown SD, Dooling RJ (1992) Perception of conspecific faces by budgerigars (Melopsittacus undulatus) I. Natural faces. J Comp Psychol 106:203–216

    Article  PubMed  CAS  Google Scholar 

  • Bruce C (1982) Face recognition by monkeys: absence of an inversion effect. Neuropsychology 20:515–521

    Article  CAS  Google Scholar 

  • Buswell GT (1935) How people look at pictures: a study of the psychology of perception in art. University of Chicago Press, Chicago

    Google Scholar 

  • Campan R, Scapini F (2002) Ethologie: approche systémique du comportement. De Boeck Université, Bruxelles

    Google Scholar 

  • Cerella J (1979) Visual classes and natural categories in the pigeon. J Exp Psychol Hum Percept Perform 5(1):68–77

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock J (1996) Origin of the dog: domestication and early history. In: Serpell J (ed) The domestic dog: its evolution, behaviour and interaction with people. Cambridge University Press, New York, pp 6–20

    Google Scholar 

  • Coile DC, Pollitz CH, Smith JC (1989) Behavioral determination of critical flicker fusion in dogs. Physiol Behav 45(6):1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Coulon M, Deputte BL, Heyman Y, Delatouche L, Richard C, Baudoin C (2007) Visual discrimination by heifers (Bos taurus) of their own species. J Comp Psychol 121(2):198–204

    Article  PubMed  Google Scholar 

  • Coulon M, Deputte BL, Heyman Y, Baudoin C (2009) Individual recognition in domestic cattle (Bos taurus): evidence from 2D-images of heads from different breeds. PLoS ONE 4(2):e4441

    Article  PubMed  Google Scholar 

  • Coulon M, Baudoin C, Heyman Y, Deputte BL (2010) Cattle discriminate between familiar and unfamiliar conspecifics by using only head visual cues. Anim Cogn 14(2):279–290

    Article  PubMed  Google Scholar 

  • Dahl CD, Wallraven C, Bülthoff HH, Logothetis NK (2009) Humans and macaques employ similar face-processing strategies. Curr Biol 19(6):509–513

    Article  PubMed  CAS  Google Scholar 

  • Denis B (2007) Génétique et sélection chez le chien, vol 2ème édition. PMCAC et SCC, Paris

    Google Scholar 

  • Dufour V, Pascalis O, Petit O (2006) Face processing limitation to own species in primates: a comparative study in brown capuchins, Tonkean macaques and humans. Behav Process 73:107–113

    Article  Google Scholar 

  • Eimas PD, Quinn PC, Cowan P (1994) Development of exclusivity in perceptually based categories of young infants. J Exp Child Psychol 58(3):418–431

    Article  PubMed  CAS  Google Scholar 

  • Faragó T, Pongrácz P, Miklósi Á, Huber L, Virányi Z, Range F (2010) Dogs’ expectation about signalers’ body size by virtue of their growls. PLoS ONE 5(12):e15175

    Article  PubMed  Google Scholar 

  • Farah MJ, Wilson KD, Drain M, Tanaka JN (1998) What is “special” about face perception? Psychol Rev 105(3):482–498

    Article  PubMed  CAS  Google Scholar 

  • Ferreira G, Keller M, Saint-Dizier H, Perrin G, Lévy F (2004) Transfer between views of conspecific faces at different ages or in different orientations by sheep. Behav Process 67:491–499

    Article  Google Scholar 

  • Fujita K (1987) Species recognition by five macaques monkeys. Primates 28(3):353–366

    Article  Google Scholar 

  • Fujita K (1993) Development of visual preference for closely related species by infant and juvenile macaques with restricted social experience. Primates 34(2):141–150

    Article  Google Scholar 

  • Fujita K, Watanabe K (1995) Visual preference for closely related species by Sulawesi macaques. Am J Primatol 37(3):253–261

    Article  Google Scholar 

  • Gaunet F, Deputte B (2011) Functionally referential and intentional communication in the domestic dog: effects of spatial and social contexts. Anim Cogn 14(6):849–860

    Article  PubMed  Google Scholar 

  • Gheusi G, Bluthé R-M, Goodall G, Dantzer R (1994) Social and individual recognition in rodents: methodological aspects and neurobiological bases. Behav Process 33(1–2):59–87

    Article  Google Scholar 

  • Ghosh N, Lea SEG, Noury M (2004) Transfer to intermediate forms following concept discrimination by pigeons: chimeras and morphs. J Exp Anal Behav 82(2):125–141

    Article  PubMed  Google Scholar 

  • Goto K, Lea SEG, Wills AJ, Milton F (2011) Interpreting the effects of image manipulation on picture perception in pigeons (Columba livia) and humans (Homo sapiens). J Comp Psychol 125(1):48–60

    Article  PubMed  Google Scholar 

  • Hare B, Tomasello M (1999) Domestic dogs (Canis familiaris) use human and conspecific social cues to locate hidden food. J Comp Psychol 113:173–177

    Article  Google Scholar 

  • Harlow HF (1949) The formation of learning sets. Psychol Rev 56:51–65

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Kano F, Tomonaga M (2010) Differential sensitivity to conspecific and allospecific cues in chimpanzees and humans: a comparative eye-tracking study. Biol Lett 6:610–613

    Article  PubMed  Google Scholar 

  • Hemmer H (1990) Domestication: the decline of environmental appreciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Herrnstein RJ (1990) Levels of stimulus control: a functional approach. Cogn 37(1–2):133–166

    Article  CAS  Google Scholar 

  • Jacobs GH, Deegan JF, Crognale MA, Fenwick JA (1993) Photopigments of dogs and foxes and their implications for canid vision. Vis Neurosci 10:173–180

    Article  PubMed  CAS  Google Scholar 

  • Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Phil Trans R Soc B 361:2109–2128

    Article  PubMed  Google Scholar 

  • Kendrick KM, Atkins K, Hinton MR, Broad KD, Fabre-Nys C, Keverne B (1995) Facial and vocal discrimination in sheep. Anim Behav 49(6):1665–1676

    Article  Google Scholar 

  • Kendrick KM, Atkins K, Hinton MR, Heavens P, Keverne B (1996) Are faces special for sheep? Evidence from facial and object discrimination learning tests showing effects of inversion and social familiarity. Behav Process 38(1):19–35

    Article  Google Scholar 

  • Kendrick KM, Hinton MR, Atkins K, Haupt MA, Skinner JD (1998) Mothers determine sexual preferences. Nature 395:229–230

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM, Leigh A, Peirce J (2001a) Behavioural and neural correlates of mental imagery in sheep using face recognition paradigms. Anim Welf 10:89–101

    Google Scholar 

  • Kendrick KM, Haupt MA, Hinton MR, Broad KD, Skinner JD (2001b) Sex differences in the influence of mothers on the sociosexual preferences of their offspring. Hormon Behav 40(2):322–338

    Article  CAS  Google Scholar 

  • Kerswell KJ, Butler KL, Bennett P, Hemsworth PH (2010) The relationships between morphological features and social signalling behaviours in juvenile dogs: the effect of early experience with dogs of different morphotypes. Behav Process 85(1):1–7

    Article  Google Scholar 

  • Leopold DA, Rhodes G (2010) A comparative view of face perception. J Comp Psychol 124(3):233–251

    Article  PubMed  Google Scholar 

  • Ligout S, Porter RH (2004) The role of visual cues in lambs’ discrimination between individual agemates. Behaviour 141(5):617–632

    Article  Google Scholar 

  • Ligout S, Keller M, Porter RH (2004) The role of olfactory cues in the discrimination of agemates by lambs. Anim Behav 68:785–792

    Article  Google Scholar 

  • Lombardi CM, Delius JD (1990) Size invariance of pattern recognition in pigeons. Behavioral approaches to pattern recognition and concept formation. In: Commons ML, Herrnstein RJ, Kosslyn SM, Mumford DB (eds) Behavioral approaches to pattern recognition and concept formation. Quantitative analyses of behavior, vol 8. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 41–65

  • Malpass RS, Kravitz J (1969) Recognition for faces of own and other race. J Personal Soc Psychol 13(4):330–334

    Article  CAS  Google Scholar 

  • Megnin P (1897) Le chien et ses races. Tome I: Histoire du chien depuis les temps les plus reculés, Origine des races et classification. Bibliothèque de l’Eleveur, Vincennes

  • Meissner CA, Brigham JC (2001) Thirty years of investigating the own-race bias in memory for faces: a meta-analytic review. Psychol Public Policy Law 7(1):3–35

    Article  Google Scholar 

  • Miklósi A (2007) Dog: behaviour, evolution, and cognition. Oxford University Press, Oxford

    Book  Google Scholar 

  • Miller PE (2008) Structure and function of the eye. In: Maggs DJ, Miller PE, Ofri R (eds) Slatter’s fundamentals of veterinary opthalmology. Saunders Elsevier, St Louis, Missouri, pp 1–19

    Chapter  Google Scholar 

  • Morgan CL (1898) An introduction to comparative psychology. Walter Scott Ltd, London

    Google Scholar 

  • Nagasawa M, Murai K, Mogi K, Kikusui T (2011) Dogs can discriminate human smiling faces from blank expressions. Anim Cogn 14(4):525–533

    Google Scholar 

  • Neuhaus W, Regenfuss E (1967) Über die Sehschärfe des Haushundes bei verschiedenen Helligkeiten. Z Vgl Physiol 57(2):137–146

    Article  Google Scholar 

  • Ogura T (2011) Contrafreeloading and the value of control over visual stimuli in Japanese macaques (Macaca fuscata). Anim Cogn 14:427–431

    Article  PubMed  Google Scholar 

  • Parr LA, Heintz M (2008) Discrimination of faces and houses by Rhesus monkeys: the role of stimulus expertise and rotation angle. Anim Cogn 11:467–474

    Article  PubMed  Google Scholar 

  • Parr LA, Dove T, Hopkins WD (1998) Why faces may be special: evidence of the inversion effect in chimpanzees. J Cogn Neurosci 10:615–622

    Article  PubMed  CAS  Google Scholar 

  • Pascalis O, Bachevalier J (1998) Face recognition in primates: a cross-species study. Behav Process 43:87–96

    Article  Google Scholar 

  • Pascalis O, de Haan M, Nelson CA (2002) Is face processing species-specific during the first year of life? Science 296:1321–1323

    Article  PubMed  CAS  Google Scholar 

  • Peirce JW, Leigh AE, Kendrick KM (2000) Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychol 38(4):475–483

    Article  CAS  Google Scholar 

  • Perrett DI, Mistlin AJ (1990) Perception of facial characteristics by monkeys. In: Stebbins WC, Berkley MA (eds) Comparative perception: complex signals, vol 2. Wiley, New York, pp 187–215

    Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Article  PubMed  CAS  Google Scholar 

  • Perrett DI, Mistlin AJ, Chitty A, Smith PAJ, Potter DD, Broennimann R, Harries M (1988) Specialized face processing and hemispheric asymmetry in man and monkey: evidence from single unit and reaction time studies. Behav Process 29:245–258

    CAS  Google Scholar 

  • Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J Neurophysiol 101(5):2581–2600

    Article  PubMed  Google Scholar 

  • Porter RH (1987) Kin recognition: functions and mediating mechanisms. In: Crawford C, Smith M, Krebs D (eds) Sociobiology and psychobiology: ideas, issues and applications. Lawrence Erlbaum Associates, Mahwah, NJ, pp 175–203

    Google Scholar 

  • Porter RH, Nowak R, Orgeur P, Lévy F, Schaal B (1997) Twin/non-twin discrimination by lambs: an investigation of salient stimulus characteristics. Behaviour 134:463–475

    Article  Google Scholar 

  • Pretterer G, Bubna-Littitz H, Windischbauer G, Gabler C, Griebel U (2004) Brightness discrimination in the dog. J Vis 4:241–249

    Article  PubMed  Google Scholar 

  • Quinn PC, Eimas PD (1996) Perceptual cues that permit categorical differentiation of animal species by infants. J Exp Child Psychol 63(1):189–211

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Racca A, Amadei E, Ligout S, Guo K, Meints K, Mills D (2010) Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris). Anim Cogn 13(3):525–533

    Article  PubMed  Google Scholar 

  • Range F, Viranyi Z, Huber L (2007a) Selective imitation in domestic dogs. Curr Biol 17:868–872

    Article  PubMed  CAS  Google Scholar 

  • Range F, Aust U, Steurer M, Huber L (2007b) Visual categorization of natural stimuli by domestic dogs. Anim Cogn 11(2):339–347

    Article  PubMed  Google Scholar 

  • Regodon S, Robina A, Franco A, Vivo JM, Lignereux Y (1991) Détermination radiologique et statistique des types morphologiques Crâniens chez le Chien: dolichocéphalic. Mésocéphalie et Brachycéphalie. Anat Histol Embryol 20(2):129–138

    Article  PubMed  CAS  Google Scholar 

  • Rybarczyk P, Koba Y, Rushen J, Tanida H, de Passillé AM (2001) Can cows discriminate people by their faces? Appl Anim Behav Sci 74(3):175–189

    Article  Google Scholar 

  • Schrier AM (1984) Learning how to learn: the significance and current status of learning set formation. Primates 25(1):95–102

    Article  Google Scholar 

  • Sherman SM, Wilson JR (1975) Behavioral and morphological evidence for binocular competition in the postnatal development of the dog’s visual system. J Comp Neurol 161(2):183–195

    Article  PubMed  CAS  Google Scholar 

  • Somppi S, Törnqvist H, Hänninen L, Krause C, Vainio O (2012) Dogs do look at images: eye tracking in canine cognition research. Anim Cogn 15(2):163–174

    Article  PubMed  Google Scholar 

  • Soto FA, Wasserman EA (2010) Error-driven learning in visual categorization and object recognition: a common-elements model. Psychol Rev 117:349–381

    Article  PubMed  Google Scholar 

  • Spence KW (1960) Behavior theory and Learning. Prentice Hall, Englewood Cliffs, NJ

  • Sperling SE (1965) Reversal learning and resistance to extinction: a supplementary report. Psychol Bull 64(4):310–312

    Article  PubMed  CAS  Google Scholar 

  • Svartberg K, Forkman B (2002) Personality traits in the domestic dog (Canis familiaris). Appl Anim Behav Sci 79(2):133–155

    Article  Google Scholar 

  • Sweller J (1973) The effect of task difficulty and criteria of learning on a subsequent reversal. Q J Exp Psychol 25(2):223–228

    Google Scholar 

  • Tate AJ, Fischer H, Leigh AE, Kendrick KM (2006) Behavioural and neurophysiological evidence for face identity and face emotion processing in animals. Phil Trans R Soc B 361:2155–2172

    Article  PubMed  Google Scholar 

  • Tibbetts EA (2002) Visual signals of individual identity in the wasp Polistes fuscatus. Proc R Soc Lond B 269:1423–1428

    Article  Google Scholar 

  • Tinbergen N (1953) Social behaviour in animals with special references to vertebrates. Methuen & Co. Ltd, London

    Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674

    Article  PubMed  CAS  Google Scholar 

  • Van der Velden J, Zheng Y, Patullo BW, Macmillan DL (2008) Crayfish recognize the faces of fight opponents. PLoS ONE 3(2):e1695

    Article  PubMed  Google Scholar 

  • Vaughan W (1988) Formation of equivalence sets in pigeons. J Exp Psychol Anim Behav Process 14(1):36–42

    Article  Google Scholar 

  • Virányi Z, Topál J, Gácsi M, Miklósi Á, Csányi V (2004) Dogs respond appropriately to cues of humans’ attentional focus. Behav Process 66(2):161–172

    Article  Google Scholar 

  • Virányi Z, Gácsi M, Kubinyi E, Topál J, Belényi B, Ujfalussy D, Miklósi Á (2008) Comprehension of human pointing gestures in young human-reared wolves (Canis lupus) and dogs (Canis familiaris). Anim Cogn 11(3):373–387

    Article  PubMed  Google Scholar 

  • Wayne RK, Ostrander EA (2007) Lessons learned from the dog genome. Trends Genet 23(11):557–567

    Article  PubMed  CAS  Google Scholar 

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81(1):141–145

    Article  Google Scholar 

  • Yoshikubo S (1985) Species discrimination and concept formation by rhesus monkeys (Macaca mulatta). Primates 26:285–299

    Article  Google Scholar 

  • Young SG, Hugenberg K, Bernstein MJ, Sacco DF (2009) Interracial contexts debilitate same-race face recognition. J Exp Soc Psychol 45(5):1123–1126

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Charles T. Snowdon for his useful comments and careful editing on the manuscript. Thanks are also due to VetAgro-Sup which enabled our project to be carried out, to vet students Cindy Ribolzi and Florent Roques for their assistance in experimental procedure, to owners of our subjects who entrusted their dogs to us and to Royal Canin® for providing food rewards for dogs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Autier-Dérian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Autier-Dérian, D., Deputte, B.L., Chalvet-Monfray, K. et al. Visual discrimination of species in dogs (Canis familiaris). Anim Cogn 16, 637–651 (2013). https://doi.org/10.1007/s10071-013-0600-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-013-0600-8

Keywords

Navigation