Skip to main content
Log in

Semi-modified okara whey diet increased insulin secretion in diabetic rats fed a basal or high fat diet

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lifestyle and diet preferences are primarily responsible for developing type 2 diabetes. In this study, okara was manufactured into okara whey crackers (OWC) to investigate its dietary role in controlling diabetes in streptozotocin-diabetic rats with and without a high-fat diet. Forty-eight rats were divided into eight groups. G1–G4 were nondiabetic and fed a basal diet, a basal diet with 30% crackers, high fat diet, and a high-fat diet with 30% crackers, respectively. G5–G8 were diabetic groups that received similar diets as previous groups. Blood glucose, liver function, lipid pattern, pancreas and liver histopathology, and insulin immunohistochemistry were performed. OWC improved measured parameters and histopathology of the liver and pancreas in diabetic rats. The area % of positive insulin cells was increased in G6 (5.20%) and G8 rats (2.83%) fed OWC compared to diabetic rats (1.17%). In conclusion, the use of 30% OWC in a semi-modified diet has controlled the hyperglycemia and hyperlipidemia associated with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed LA, Hassan DR, Hemeda HM. Anti-hyperglycemic effects of okara, corn hull, and their combination in alloxan-induced diabetic rats. World Appl. Sci. J. 9: 1139-1147 (2010)

    CAS  Google Scholar 

  • A.O.A.C. Official Methods of Analysis of AOAC. Intl. 18th ed. Association of Official Analytical Chemists, Rockville, Maryland, USA (2005)

  • Bai F, Jiang F, Lu J, Ma S, Peng, Y, Jin Y, Xu W, Cheng J, Wu H. The Impact of hyperglycemic emergencies on the kidney and liver. J. Diabetes Res. 2013: 967097 (2013)

    Article  Google Scholar 

  • Bland JS. Jeffrey S. Bland, PhD, FACN, CNS: functional medicine pioneer. Altern. Ther. Health Med. 10: 74-81 (2004)

    PubMed  Google Scholar 

  • Bolzán AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat. Res.-Rev. Mutat. Res. 512: 121-134 (2002)

    Article  Google Scholar 

  • Bose D, Shams-Ud-Din M. The effect of chickpea (Cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agril. Univ. 8: 147-152 (1970)

    Article  Google Scholar 

  • Cantero I, Abete I, Monreal J, Martinez J, Zulet M. Fruit fiber consumption specifically improves liver health status in obese subjects under energy restriction. Nutrients 9: 667 (2017)

    Article  Google Scholar 

  • Chen C, Zeng Y, Xu J, Zheng H, Liu J, Fan R, Zhu W, Yuan L, Qin Y, Chen S, Zhou Y, Wu Y, Wan J, Mi M, Wang, J. Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Exp. Ther. Med. 12: 1232-1242 (2016)

    Article  CAS  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 51: 117-123 (2005)

    Article  CAS  Google Scholar 

  • De Feo P, Gaisano MG, Haymond MW. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J. Clin. Invest. 88: 833-840 (1991)

    Article  Google Scholar 

  • Dreon DM, Fernstrom HA, Campos H, Blanche P, Williams PT, Krauss RM. Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men. Am. J. Clin. Nutr. 67: 828-836 (1998)

    Article  CAS  Google Scholar 

  • Elreffaei W. Biological evaluation of okara in rats based on plasma lipid profile and histology. Int. J. Plant Soil Sci. 3: 507-522 (2014)

    Article  Google Scholar 

  • Ercisli S, Akbulut M, Ozdemir O, Sengul M, Orhan E. Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L.) genotypes in Turkey. Int. J. Food Sci. Nutr. 59: 477-482 (2008)

    Article  CAS  Google Scholar 

  • Farbstein D, Levy AP. HDL dysfunction in diabetes: causes and possible treatments. Expert Rev. Cardiovasc. Ther. 10: 353-361 (2012)

    Article  CAS  Google Scholar 

  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 107: 1058-1070 (2010)

    Article  CAS  Google Scholar 

  • Grizotto RK, Rufi CR, Yamada EA, Vicente E. Evaluation of the quality of a molded sweet biscuit enriched with okara flour. Ciênc. Technol. Aliment 30: 270-275 (2010)

    Article  Google Scholar 

  • Guo X, Yang B, Tang J, Li D. Fatty acid, and non-alcoholic fatty liver disease: meta-analyses of case-control and randomized controlled trials. Clin. Nutr. 37: 113-122. (2018)

    Article  CAS  Google Scholar 

  • Hosokawa M, Katsukawa M, Tanaka H, Fukuda H, Okuno S, Tsuda K, Iritani N. Okara ameliorates glucose tolerance in GK rats. J. Clin. Biochem. Nutr. 58: 216-222 (2016)

    Article  CAS  Google Scholar 

  • Ickin GM, Guven BA, Yavuz O, Hismiogullari AA. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance. Biotech. Histochem. 90: 495–505 (2015)

    Article  Google Scholar 

  • Jiang F, Morahan G. Pancreatic stem cells remain unresolved. Stem Cells Dev. 23: 2803-2812 (2014)

    Article  CAS  Google Scholar 

  • Khan A, Bryden NA, Polansky MM, Anderson RA. Insulin potentiating factor and chromium content of selected foods and spices. Biol. Trace Elem. Res. 24: 183-188 (1990)

    Article  CAS  Google Scholar 

  • Li B, Qiao M, Lu F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 28: 231-252 (2012)

    Article  Google Scholar 

  • Lu F, Liu Y, Li B. Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre. 2: 126-132 (2013)

    Article  CAS  Google Scholar 

  • Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin. Chem. 23: 882-884 (1977)

    Article  CAS  Google Scholar 

  • O’Toole DK. Characteristics and use of okara, the soybean residue from soy milk production a review. J. Agric. Food Chem. 47: 363-371 (1999)

    Article  Google Scholar 

  • Parry SA, Hodson L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J. Invest. Med. 65:1102-1115 (2017).

    Article  Google Scholar 

  • Préstamo G, Rupérez P, Espinosa-Martos I, Villanueva MJ, Lasunción MA. The effects of okara on rat growth, cecal fermentation, and serum lipids. Eur. Food Res. Technol. 225: 925-928 (2006)

    Article  Google Scholar 

  • Requena M, Aguilar-González C, Barragn L, Cunha M, Correia M, Esquivel J, Herrera R. Dietary fiber: an ingredient against obesity. Emir. J. Food. Agric. 28: 522-530 (2016)

    Article  Google Scholar 

  • Rodríguez R, Jiménez A, Fernández-Bolaños J, Guillén R, Heredia A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 17: 3-15 (2006)

    Article  Google Scholar 

  • Scalia R, Gong Y, Berzins B, Zhao LJ, Sharma K. Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: the role of mu- calpain. Diabetes 56: 1842-1849 (2007)

    Article  CAS  Google Scholar 

  • Senica M, Stampar F, Mikulic-Petkovsek M. Different extraction processes affect the metabolites in blue honeysuckle (Lonicera caerulea L. subsp. edulis) food products. Turk. J. Agric. For. 43: 576-585 (2019)

    Article  CAS  Google Scholar 

  • Shanmugasundaram E, Gopinath K, Shanmugasundaram K, Rajendran V. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J. Ethnopharmacol. 30: 265-279 (1990)

    Article  CAS  Google Scholar 

  • Sukkar SG, Bounous G. The role of whey protein in antioxidant defense. Riv. Ital. Nutr. Parenter. Enter. 22: 193-200 (2004)

    Google Scholar 

  • Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 94: 285-292 (2008)

    Article  CAS  Google Scholar 

  • Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J. Hepatol. 56: 255-266 (2012)

    Article  Google Scholar 

  • Wallach JB. Interpretation of Diagnostic Tests. 8th Ed. Lippincott Williams & Wilkins, Philadelphia, PA, USA (2007)

    Google Scholar 

  • Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 11: 1185-1200 (2014)

    Article  Google Scholar 

  • Yazdanparast R, Esmaeili MA, Helan JA. Teucrium polium extract effects pancreatic function of streptozotocin diabetic rats: a histopathological examination. Iran. Biomed. J. 9: 81-85 (2005)

    Google Scholar 

  • Zia-Ul-Haq M, Ahmad S, Bukhari SA, Amarowicz R, Ercisli S, Jaafar HZE. Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biol. Res. 47:23 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the technicians in the Biochemistry Department, Faculty of Agriculture, Giza, Egypt for taking good care of animals and for assisting in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa S. Khattab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Mobdy, A.E., Khattab, M.S., Mahmoud, E.A. et al. Semi-modified okara whey diet increased insulin secretion in diabetic rats fed a basal or high fat diet. Food Sci Biotechnol 30, 107–116 (2021). https://doi.org/10.1007/s10068-020-00842-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00842-3

Keywords

Navigation