Skip to main content
Log in

Compositional analysis of walnut lipid extracts and properties as an anti-cancer stem cell regulator via suppression of the self-renewal capacity

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Colon cancer is a leading cause of cancer-related deaths worldwide. Effects of walnut (Juglans regia L.) lipid extracts (WLEs) on the self-renewal capacity of cancer stem cells (CSCs) in colon cancer were investigated. The dominant component of WLEs was α-linoleic acid (64.6%), followed by α-linolenic acid (14.6%), and oleic acid (12.6%). A higher concentration of γ-tocopherol (37.1%) was also present than of α-tocopherol (0.6%). CD133+CD44+CSCs treated with WLEs showed inhibition of colony formation and sphere formation, indicating a decrease in the self-renewal capacity. Treatment with WLEs also resulted in down-regulation of protein levels, including Notch1, phospho-GSK3β (p-GSK3β), and β-catenin, which are associated with CSCs and the self-renewing capacity. WLEs rich in essential fatty acids and γ-tocopherol can exert therapeutic actions on colon cancer via targeting of CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA-Cancer J. Clin. 61: 69–90 (2011)

    Article  Google Scholar 

  2. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: Models and concepts. Annu. Rev. Med. 58: 267–284 (2007)

    Article  CAS  Google Scholar 

  3. Min SJ, Lim JY, Kim HR, Kim SJ, Kim Y. Sasa quelpaertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int. J. Mol. Sci. 16: 9976–9997 (2015)

    Article  CAS  Google Scholar 

  4. Chen KL, Pan F, Jiang H, Chen JF, Pei L, Xie FW, Liang HJ. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44 (high) metastatic subset in HCT116 colon cancer cells. Clin. Exp. Metastas. 28: 751–763 (2011)

    Article  CAS  Google Scholar 

  5. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607 (2009)

    Article  CAS  Google Scholar 

  6. Keysar SB, Jimeno A. More than markers: Biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9: 2450–2457 (2010)

    Article  CAS  Google Scholar 

  7. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110 (2007)

    Article  Google Scholar 

  8. Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett. 279: 8–12 (2009)

    Article  CAS  Google Scholar 

  9. Mumm JS, Kopan R. Notch signaling: From the outside in. Dev. Biol. 228: 151–165 (2000)

    Article  CAS  Google Scholar 

  10. Groden J, Joslyn G, Samowitz W, Jones D, Bhattacharyya N, Spirio L, Thliveris A, Robertson M, Egan S, Meuth M, White R. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res. 55: 1531–1539 (1995)

    CAS  Google Scholar 

  11. Metcalfe C, Bienz M. Inhibition of GSK3 by Wnt signalling—two contrasting models. J. Cell Sci. 124: 3537–3544 (2011)

    Article  CAS  Google Scholar 

  12. Feldman EB. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr. 132: 1062S–1101S (2002)

    Google Scholar 

  13. Kris-Etherton PM. Walnuts decrease risk of cardiovascular disease: A summary of efficacy and biologic mechanisms. J. Nutr. 144: 547S–554S (2014)

    Article  CAS  Google Scholar 

  14. Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J. Nutr. 144: 561S–566S (2014)

    Article  CAS  Google Scholar 

  15. Hardman WE, Ion G, Akinsete JA, Witte TR. Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg mouse. Nutr. Cancer 63: 960–970 (2011)

    Article  CAS  Google Scholar 

  16. Kim H, Yokoyama W, Davis PA. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism. J. Med. Food 17: 1281–1286 (2014)

    Article  CAS  Google Scholar 

  17. Tsoukas MA, Ko BJ, Witte TR, Dincer F, Hardman WE, Mantzoros CS. Dietary walnut suppression of colorectal cancer in mice: Mediation by miRNA patterns and fatty acid incorporation. J. Nutr. Biochem. 26: 776–783 (2015)

    Article  CAS  Google Scholar 

  18. Kim Y, Lin Q, Zelterman D, Yun Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res. 69: 9271–9280 (2009)

    Article  CAS  Google Scholar 

  19. Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, Winkelmann W. Study of the main constituents of some authentic walnut oils. J. Agr. Food Chem. 53: 4853–4860 (2005)

    Article  CAS  Google Scholar 

  20. Pereira JA, Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 46: 2103–2111 (2008)

    Article  CAS  Google Scholar 

  21. Savage GP DP, McNeil DL. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem. Soc. 76: 1059–1063 (1999)

    CAS  Google Scholar 

  22. Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: Association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE 9: e94621 (2014)

    Article  Google Scholar 

  23. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66: 9339–9344 (2006)

    Article  CAS  Google Scholar 

  24. Lee HA, Park S, Kim Y. Effect of beta-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells. Oncol. Rep. 30: 1869–1877 (2013)

    CAS  Google Scholar 

  25. Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS, Sun D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 16: 2580–2590 (2010)

    Article  CAS  Google Scholar 

  26. Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res. 35: 39–46 (2015)

    CAS  Google Scholar 

  27. Vanden Heuvel JP, Belda BJ, Hannon DB, Kris-Etherton PM, Grieger JA, Zhang J, Thompson JT. Mechanistic examination of walnuts in prevention of breast cancer. Nutr. Cancer 64: 1078–1086 (2012)

    Article  CAS  Google Scholar 

  28. Carey AN, Fisher DR, Joseph JA, Shukitt-Hale B. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutr. Neurosci. 16: 13–20 (2013)

    Article  CAS  Google Scholar 

  29. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 134: 2991–2997 (2004)

    CAS  Google Scholar 

  30. Yang T, Fang S, Zhang HX, Xu LX, Zhang ZQ, Yuan KT, Xue CL, Yu HL, Zhang S, Li YF, Shi HP, Zhang Y. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. Biochem. 24: 744–753 (2013)

    Article  CAS  Google Scholar 

  31. Ju J, Hao X, Lee MJ, Lambert JD, Lu G, Xiao H, Newmark HL, Yang CS. A gammatocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prev. Res. 2: 143–152 (2009)

    Article  CAS  Google Scholar 

  32. Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J. Cell Biochem. 116: 2517–2527 (2015)

    Article  CAS  Google Scholar 

  33. De Carlo F, Witte TR, Hardman WE, Claudio PP. Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PLoS ONE 8: e69760 (2013)

    Article  Google Scholar 

  34. Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7: 86–95 (2005)

    Article  CAS  Google Scholar 

  35. Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, Leardkamolkam V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 7: 1672–1687 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Kim, YS., Lee, J. et al. Compositional analysis of walnut lipid extracts and properties as an anti-cancer stem cell regulator via suppression of the self-renewal capacity. Food Sci Biotechnol 25, 623–629 (2016). https://doi.org/10.1007/s10068-016-0087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0087-6

Keywords

Navigation