Skip to main content
Log in

Effects of elevated intracellular cyclic di-GMP levels on biofilm formation and transcription profiles of Vibrio vulnificus

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Effects of elevated intracellular 3′,5′-cyclic diguanylic acid (c-di-GMP) levels on biofilm formation and transcription profiles were evaluated to assess the functions of c-di-GMP in Vibrio vulnificus. Elevated c-di-GMP levels promoted biofilm formation and rugose colony development. Microarray analysis revealed that c-di-GMP influenced expression of genes belonging to different functional categories and more than 5% of the V. vulnificus genome. Among these, 10 genes potentially involved in biofilm formation were experimentally verified as subject to c-di-GMP regulation. c-di-GMP contributes to biofilm formation based on modulation of diverse cellular processes in V. vulnificus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flemming HC, Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8: 623–633 (2012)

    Google Scholar 

  2. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435–464 (1987)

    Article  CAS  Google Scholar 

  3. Johnson LR. Microcolony and biolm formation as a survival strategy for bacteria. J. Theor. Biol. 251: 24–34 (2008)

    Article  CAS  Google Scholar 

  4. Marco-Noales E, Milán M, Fouz B, Sanjuán E, Amaro C. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2). Appl. Environ. Microb. 67: 4717–4725 (2001)

    Article  CAS  Google Scholar 

  5. Guo Y, Rowe-Magnus DA. Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect. Immun. 78: 1390–1402 (2010)

    Article  CAS  Google Scholar 

  6. Guo Y, Rowe-Magnus DA. Overlapping and unique contributions of two conserved polysaccharide loci in governing distinct survival phenotypes in Vibrio vulnificus. Environ. Microbiol. 13: 2888–2990 (2011)

    Article  CAS  Google Scholar 

  7. Grau BL, Henk MC, Pettis GS. High-frequency phase variation of Vibrio vulnificus 1003: Isolation and characterization of a rugose phenotypic variant. J. Bacteriol. 187: 2519–2525 (2005)

    Article  CAS  Google Scholar 

  8. Paranjpye RN, Johnson AB, Baxter AE, Strom MS. Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Appl. Environ. Microb. 73: 5041–5044 (2007)

    Article  CAS  Google Scholar 

  9. Kim SM, Park JH, Lee HS, Kim WB, Ryu JM, Han HJ, Choi SH. LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infect. Immun. 81: 3721–3730 (2013)

    Article  CAS  Google Scholar 

  10. Boyd CD, O’Toole GA. Second messenger regulation of biofilm formation: Breakthroughs in understanding c-di-GMP effector systems. Annu. Rev. Cell Dev. Bi. 28: 439–462 (2012)

    Article  CAS  Google Scholar 

  11. Hengge R. Principles of c-di-GMP signaling in bacteria. Nat. Rev. Microbiol. 7: 263–273 (2009)

    Article  CAS  Google Scholar 

  12. Nakhamchik A, Wilde C, Rowe-Magnus DA. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl. Environ. Microb. 74: 4199–4209 (2008)

    Article  CAS  Google Scholar 

  13. Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. Identication of OmpU of Vibrio vulnicus as a bronectin-binding protein and its role in bacterial pathogenesis. Infect. Immun. 74: 5586–5594 (2006)

    Article  CAS  Google Scholar 

  14. Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR. Self-produced exopolysaccharide is a signal that stimulates biolm formation in Pseudomonas aeruginosa. P. Natl. Acad. Sci. USA 109: 20632–20636 (2012)

    Article  CAS  Google Scholar 

  15. Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, Downie JA, Zorreguieta A. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J. Bacteriol. 188: 4474–4486 (2006)

    Article  CAS  Google Scholar 

  16. Kim HS, Park SJ, Lee KH. Role of NtrC-regulated exopolysaccharides in the biolm formation and pathogenic interaction of Vibrio vulnificus. Mol. Microbiol. 74: 436–453 (2009)

    Article  CAS  Google Scholar 

  17. Greenberg EP, Hastings JW, Ulitzur S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120: 87–91 (1979)

    Article  CAS  Google Scholar 

  18. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207–210 (2002)

    Article  CAS  Google Scholar 

  19. Barrios AF, Zuo R, Ren D, Wood TK. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biolm formation and conjugation plasmids abolish motility. Biotechnol. Bioeng. 93: 188–200 (2006)

    Article  CAS  Google Scholar 

  20. Smith SG, Mahon V, Lambert MA, Fagan RP. A molecular Swiss army knife: OmpA structure, function, and expression. FEMS Microbiol. Lett. 273: 1–11 (2007)

    Article  CAS  Google Scholar 

  21. Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 55: 1160–1182 (2005)

    Article  CAS  Google Scholar 

  22. Liang Y, Gao H, Chen J, Dong Y, Wu L, He Z, Liu X, Qiu G, Zhou J. Pellicle formation in Shewanella oneidensis. BMC Microbiol. 10: 291 (2010)

    Article  Google Scholar 

  23. Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J. Bacteriol. 194: 914–924 (2012)

    Article  CAS  Google Scholar 

  24. Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu. Rev. Microbiol. 65: 71–90 (2011)

    Article  CAS  Google Scholar 

  25. Casper-Lindley C, Yildiz FH. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186: 1574–1578 (2004)

    Article  CAS  Google Scholar 

  26. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1: 784–791 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Lim, J.G. & Choi, S.H. Effects of elevated intracellular cyclic di-GMP levels on biofilm formation and transcription profiles of Vibrio vulnificus . Food Sci Biotechnol 24, 771–776 (2015). https://doi.org/10.1007/s10068-015-0100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0100-5

Keywords

Navigation