Skip to main content
Log in

Comparison of the quality characteristics of Korean fermented red pepper-soybean paste (Gochujang) Meju made with soybeans (Glycine max L.) germinated under dark and light conditions

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The quality characteristics of gochujang meju, a fermented red pepper soybean starter, made with soybeans (Glycine max L.) germinated under dark and light conditions were compared. Soybeans germinated for 12 h were the most suitable for preparation of isoflavone enriched gochujang meju. The numbers of aerobic bacteria in gochujang meju fermented with either soybeans germinated under dark conditions (GGD) or soybeans germinated under light conditions (GGL) were significantly (p<0.05) increased, compared to gochujang meju fermented with non-germinated soybean (GNS). The total free sugar and isoflavone contents in GGD and GGL were significantly (p<0.05) increased, compared to GNS. The subtotal free amino acid contents in GGD and GGL of bitter taste compounds were significantly (p<0.05) decreased, compared to GNS. During germination, both dark and light factors had an influence on the quality characteristics of gochujang meju.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park JM, Lee SS, Oh HI. Changes in chemical characteristics of traditional kochujang meju during fermentation. Korean J. Food Nutr. 8: 184–191 (1995)

    Google Scholar 

  2. Shin HH, Lee SR. Attempts to estimate the use level of red pepper in kimchi and kochujang (hot soy paste). Korean J. Food Sci. Technol. 23: 301–305 (1991)

    Google Scholar 

  3. Cho H.O, Kim JG, Lee HJ, Kang JH, Lee TS. Brewing method and composition of traditional kochujang (red pepper paste) in Junrabook-do area. J. Korean Agric. Chem. Soc. 24: 21–28 (1981)

    Google Scholar 

  4. Kim YS, Oh BH, Shin DH. Quality characteristics of kochujang prepared with different meju fermented with Aspergillus sp. and Bacillus subtilis. Food Sci. Biotechnol. 17: 527–533 (2008a)

    Google Scholar 

  5. Oh HI, Shon SH, Kim JM. Changes in microflora and enzyme activities of kochujang prepared with Aspergillus oryzae, Bacillus licheniformis, and Saccharomyces rouxii during fermentation. Korean J. Food Sci. Technol. 32: 410–416 (2000)

    Google Scholar 

  6. Cho DH, Lee WJ. Microbiological studies of Korean native soysauce fermentation. J. Korean Soc. Agric. Chem. 13: 35–42 (1970)

    Google Scholar 

  7. Yang CB, Kim ZU. Changes in nitrogen compounds in soybean sprout. J. Korean Agric. Chem. Biotechnol. 23: 7–13 (1980)

    CAS  Google Scholar 

  8. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol. 126: 835–848 (2001)

    Article  CAS  Google Scholar 

  9. Choi UK, Jeong YS, Kwon OJ, Park JD, Kim YC. Comparative study of quality characteristics of Korean soy sauce made with soybeans germinated under dark and light conditions. Int. J. Mol. Sci. 12: 8105–8118 (2011)

    Article  Google Scholar 

  10. Randhir R, Lin YT, Shetty K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac. J. Clin. Nutr. 13: 295–307 (2004)

    CAS  Google Scholar 

  11. Mwikya MS, Ooghe W, Van Camp J, Ngundi D, Huyghebaert A. Amino acid profiles after sprouting, autoclaving, and lactic acid fermentation of finger millet (Eleusine coracan) and kidney beans (Phaseolus vulgaris L.). J. Agr. Food Chem. 48: 3081–3085 (2000)

    Article  Google Scholar 

  12. McGrain AK, Chen JC, Wilson KA, Tan-Wilson AL. Degradation of trypsin inhibitors during soybean germination. Phytochemistry 28: 1013–1017 (1989)

    Article  CAS  Google Scholar 

  13. Sattar A, Neelofar R, Akhtar NMA. Irradiation and germination effects on phytate, protein, and amino acids of soybean. Plant Food Hum. Nutr. 40: 185–194 (1990)

    Article  CAS  Google Scholar 

  14. Ryu SB, Zheng L, Wang X. Changes in phospholipase D expression in soybeans during seed development and germination. J. Am. Oil Chem. Soc. 73: 1171–1176 (1996)

    Article  CAS  Google Scholar 

  15. Ahmad S, Pathak DK. Nutritional changes in soybean during germination. J. Food Sci. Technol. India 37: 665–666 (2000)

    Google Scholar 

  16. Choi UK, Jeong YS, Kim MH, Lee NH, Hwang YH. Quality characteristics of meju according to germination time of raw soybean (Glycine max: Hwanggeumkong). Food Sci. Biotechnol. 16: 386–391 (2007)

    CAS  Google Scholar 

  17. Choi UK, Bajpai VK. Comparative study of quality characteristics of meju, a Korean soybean fermentation starter, made by soybeans germinated under dark and light conditions. Food Chem. Toxicol. 48: 356–362 (2010)

    Article  CAS  Google Scholar 

  18. Nagai T, Inoue R. Preparation and the functional properties of water extract and alkaline extract from royal jelly. Food Chem. 84: 181–186 (2004)

    Article  CAS  Google Scholar 

  19. Wang G, Kuan S, Fransis O, Ware G, Carman AS. A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. J. Agr. Food Chem. 38: 185–190 (1990)

    Article  CAS  Google Scholar 

  20. Choi JS, Kwon TW, Kim JS. Isoflavone contents in some varieties of soybean. Food Biotechnol. 5: 167–169 (1996)

    Google Scholar 

  21. Choi WS, Choi SJ, Choi UK. Changes in isoflavones and germination characteristics of eunhakong (Glycine max) by germinated under dark condition. Korean J. Food Nutr. 26: 318–322 (2013)

    Article  Google Scholar 

  22. Setchell KD. Phytoestrogens: The biochemistry, physiology, and implication for human health of soy isoflavones. Am. J. Clin. Nutr. 68: 1333–1346 (1998)

    Google Scholar 

  23. Lee KJ, Row KH. Comparison of extraction methods for aglycone isoflavones from Korean soybean. Korean J. Biotechnol. Bioeng. 19: 421–426 (2004)

    Google Scholar 

  24. Pyo YH, Lee TC, Lee YC. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: S215–S220 (2005)

    Article  CAS  Google Scholar 

  25. Russin TA, Boye JI, Pham HM, Arcand Y. Antioxidant properties of genistein in a model edible oil system. J. Food Sci. 71: C395–C399 (2006)

    Article  CAS  Google Scholar 

  26. Lin PY, Lai HM. Bioactive compounds in legumes and their germinated produces. J. Agr. Food Chem. 54: 3807–3814 (2006)

    Article  CAS  Google Scholar 

  27. Kim KS, Kim JG, Kim WJ. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J. Food Sci. Technol. 36: 294–298 (2008b)

    Google Scholar 

  28. Kim EJ, Lee KI, Park KY. Effects of germination treatment during cultivation of soybean sprouts. J. Korean Soc. Nutr. 31: 615–620 (2002)

    Article  CAS  Google Scholar 

  29. Kwon SH, Lee YI, Kim JR. Evaluation of important sprouting characteristics of edible soybean sprout cultivates. Korean J. Breed. 13: 202–206 (1981)

    Google Scholar 

  30. Kim SD, Kim ID, Park MZ, Lee YG. Effect of ozone water on pesticide residual contents of soybean sprouts during cultivation. Korean J. Food Sci. Technol. 32: 277–283 (2000)

    Google Scholar 

  31. Kim DH, Choi HS, Kim WJ. Comparison study of germination and cooking rate of several soybean varieties. Korean J. Food Sci. Technol. 22: 94–98 (1990)

    Google Scholar 

  32. Kim JS, Yoo SM, Choe JS, Park HJ, Hong SP, Chang CM. Physicochemical properties of traditional cheonggukjang produced in different regions. Agric. Chem. Biotechnol. 41: 377–383 (1998)

    Google Scholar 

  33. Park HK, Gil B, Kim JK. Characteristics of taste component of commercial soybean paste. Food Sci. Biotechnol. 11: 376–379 (2002)

    CAS  Google Scholar 

  34. Choi UK, Kim MH, Lee NH, Jeong YS, Kwon OJ, Kim YC. The characteristics of cheonggukjang, a fermented soybean product, by the degree of germination of raw soybean. Food Sci. Technol. 16: 734–739 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ung-Kyu Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SJ., Lee, NH. & Choi, UK. Comparison of the quality characteristics of Korean fermented red pepper-soybean paste (Gochujang) Meju made with soybeans (Glycine max L.) germinated under dark and light conditions. Food Sci Biotechnol 23, 1223–1230 (2014). https://doi.org/10.1007/s10068-014-0167-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0167-4

Keywords

Navigation