Skip to main content
Log in

Evaluation of nutraceutical properties of Laportea interrupta (L.) chew

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study Laportea interrupta was analysed for nutritional, antioxidant, and antipyretic properties. Leaves contained significant amount of carbohydrates (19.80 g/100 g), proteins (31.30 g/100 g), starch (15.40 g/100 g), essential amino acids, and minerals. Ethanol extracts of flowers and roots revealed high total phenolic (46.35 mg gallic acid equivalents/g of extract) and flavonoid contents (96.67mg rutin equivalents/g of extract) respectively. Antioxidant assays showed that ethanol root extract possessed a strong 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (IC50: 32.34 μg/mL), a 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation scavenging activity (1,072.57 μM trolox equivalents/g of extract), and a ferric reducing ability (9,456.01 mM Fe(II)/g of extract). Antipyretic studies revealed that ethanol root and leaf extracts at a dosage of 400 mg/kg in rats reduced the pyrexia induced by Brewer’s yeast by 68.0 and 57.4%, respectively. Thus, nutraceutical potential of L. interrupta and ethnobotanical information about its use as an antipyretic was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajasekaran A, Sivagnanam G, Xavier R. Nutraceuticals as therapeutic agents: A review. Research J. Pharm. Technol. 1: 328–340 (2008)

    CAS  Google Scholar 

  2. Kliebenstein DJ. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27: 675–684 (2004)

    Article  CAS  Google Scholar 

  3. Nose K. Role of reactive oxygen species in the regulation of physiological functions. Biol. Pharm. Bull. 23: 897–903 (2000)

    Article  CAS  Google Scholar 

  4. Krishnaiah D, Sarbatly R, Nithyanandan R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 89: 217–233 (2011)

    Article  CAS  Google Scholar 

  5. Sherwin ER. Antioxidants. pp. 139–193. In: Food Additives. Branen AL, Davidson PM, Salminen S (eds). Marcel Dekker Inc., New York, NY, USA (1989)

    Google Scholar 

  6. Guyton AC, Hall JE. Textbook of Medical Physiology. 9th ed. W.B. Saunders. Philadelphia, PA, USA. pp. 920–922 (1996)

    Google Scholar 

  7. Narayanan MKR, Anilkumar N, Balakrishnan V, Sivadasan M, Alfarhan HA, Alatar AA. Wild edible plants used by the Kattunaikka, Paniya and Kuruma tribes of Wayanad District, Kerala, India. J. Med. Plants Res. 5: 3520–3529 (2011)

    Google Scholar 

  8. Jain SK. Ethnobotany and research on medicinal plants in India. pp. 153–169. In: Ethnobotany and the Search for New Drugs. Ciba Foundation Symposium 185. John Wiley & Sons, Chichester, UK (1994)

    Google Scholar 

  9. Pullaiah T. Encyclopaedia of World Medicinal Plants. Vol. II. Regency Publications, West Patel Nagar, New Delhi. India. p. 1213 (2006)

    Google Scholar 

  10. Cambie RC, Ash J. Fijian Medicinal Plants. CSIRO, Australia. p. 2081 (1994)

    Google Scholar 

  11. AOAC. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p. 1230 (1990)

    Google Scholar 

  12. Sadasivam S, Manickam A. Biochemical Methods. 2nd ed. New Age International (P) Ltd., Chennai, India. pp. 8–12, 40–42, 56–58 (2008)

    Google Scholar 

  13. Ishida Y, Fugita T, Asai K. New detection and separation method for amino acid by high performance liquid chromatography. J. Chromatogr. 204: 143–148 (1981)

    Article  CAS  Google Scholar 

  14. Makkar HPS. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 49–52 (2003)

    Book  Google Scholar 

  15. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559 (1999)

    Article  CAS  Google Scholar 

  16. Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 64: 892–895 (2001)

    Article  CAS  Google Scholar 

  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  18. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agr. Food Chem. 48: 3396–3402 (2000)

    Article  CAS  Google Scholar 

  19. OECD. Test No. 420: Acute Oral Toxicity — Fixed Dose Procedure, OECD Guidelines for Testing of Chemicals. Section 4. OECD, Paris, France. pp. 1–14 (2002)

    Book  Google Scholar 

  20. Adams SS, Hebborn P, Nicholson JS. Some aspects of the pharmacology of ibufenac, a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 20: 305–312 (1968)

    Article  CAS  Google Scholar 

  21. Umoren UE, Essien AI, Ukorebi BA, Essien EB. Chemical evaluation of the seeds of Milletia obanensis. Food Chem. 91: 195–201 (2005)

    Article  CAS  Google Scholar 

  22. Deferrari G, Mannucci I, Garibotto G. Amino acid biosynthesis. In: ELS. John Wiley & Sons Ltd., Chichester. UK. Available from: http://onlinelibrary.wiley.com/10.1002/9780470015902.a0000628.pub2.

  23. Sajeesh T, Arunachalam K, Parimelazhagan T. Antioxidant and antipyretic studies on Pothos scandens L. Asian Pac. J. Trop. Med. 4: 889–899 (2011)

    CAS  Google Scholar 

  24. Moskaug JØ, Carlsen H, Myhrstad MC, Blomhoff R. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 81: 277–283 (2005)

    Google Scholar 

  25. Buettner GR. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300: 535–543 (1993)

    Article  CAS  Google Scholar 

  26. Soares JR, Dins TCP, Cunha AP, Ameida LM. Antioxidant activity of some extracts of Thymus zygis. Free Radical Res. 26: 469–478 (1997)

    Article  CAS  Google Scholar 

  27. Osman AM, Wong KKY, Hill SJ, Fernyhough A. Isolation and the characterization of the degradation products of the mediator ABTSderived radicals formed upon reaction with polyphenols. Biochem. Biophys. Res. Commun. 340: 597–603 (2006)

    Article  CAS  Google Scholar 

  28. Sakaè M, Èanadanoviæ-Brunet J, Mišan A, Tumbas V, Mediæ Đ. Antioxidant activity of phytic acid in lipid model system. Food Technol. Biotechnol. 48: 524–529 (2010)

    Google Scholar 

  29. Gordon MH. The mechanism of antioxidant action in vitro. pp. 1–18. In: Food Antioxidants. Hudson BJF (ed). Springer, The Netherlands (1990)

    Chapter  Google Scholar 

  30. Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR. Bioflavonoids classification, pharmacological, biochemical effects and therapeutical potential. Indian J. Pharmacol. 33: 2–16 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangaraj Parimelazhagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, C.S., Sajeesh, T. & Parimelazhagan, T. Evaluation of nutraceutical properties of Laportea interrupta (L.) chew. Food Sci Biotechnol 23, 577–585 (2014). https://doi.org/10.1007/s10068-014-0079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0079-3

Keywords

Navigation