Skip to main content
Log in

Antioxidant capacity of maillard reaction products formed by a porcine plasma protein hydrolysate-sugar model system as related to chemical characteristics

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the chemical characteristics and antioxidant properties of Maillard reaction products (MRPs) prepared by porcine plasma protein hydrolysate (PPH) with three monosaccharides (glucose, fructose, and galactose) at 95°C for different lengths of time (0–6 h). The results revealed that the pH value and free amino group content decreased (p<0.05), whereas the color (redness and yellowness), browning intensity, and intermediate products increased as the reaction time increased (p<0.05). There was an obvious increase in the reducing power, 2,2′-aminodi(2-ethyl-benzothiazoline sulfonic acid-6)ammonium salt (ABTS) radical and hydroxide radical scavenging activities of the MRPs with increasing heating time (p<0.05). The PPH-galactose combination rendered a higher browning intensity, intermediate products and antioxidant activities than the PPH-glucose or PPH-fructose combination. The reducing power, ABTS and hydroxyl scavenging activities were significantly correlated with the color, the UV absorbance and the browning intensity in each model system. The results indicate that the Maillard reaction could improve the antioxidant capacity of PPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jing H, Kitts DD. Chemical characterization of different sugarcasein Maillard reaction products and protective effects on chemical-induced cytotoxicity of Caco-2 cells. Food Chem. Toxicol. 42: 1833–1844 (2004)

    Article  CAS  Google Scholar 

  2. Wijewickreme AN, Krejpcio Z, Kitts DD. Hydroxyl scavenging activity of glucose, fructose, and ribose-lysine model Maillard products. J. Food Sci. 64: 457–461 (1999)

    Article  CAS  Google Scholar 

  3. Morales FJ, Babbel MB. Antiradical efficiency of Maillard reaction mixtures in a hydrophilic media. J. Agr. Food Chem. 50: 2788–2792 (2002)

    Article  CAS  Google Scholar 

  4. Bersuder P, Hole M, Smith G. Antioxidants from a heated histidineglucose model system. Investigation of the copper (II) binding ability. J. Am. Oil Chem. Soc. 78: 1079–1082 (2001)

    Article  CAS  Google Scholar 

  5. Dong SY, Panya A, Zeng MY, Chen BC, McClements DJ, Decker EA. Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin-glucose Maillard reaction products. Food Res. Int. 46: 55–61 (2012)

    Article  CAS  Google Scholar 

  6. Sumaya-Martinea MT, Thomas S, Linard B, Binet A, Guerard F. Effect of Maillard reaction conditions on browning and antiradical activity of sugar-tuna stomach hydrolysate model system. Food Res. Int. 38: 1045–1050 (2005)

    Article  Google Scholar 

  7. Liu Q, Kong BH, Jiang LZ, Cui XH, Liu J. Free radical scavenging activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer. LWT-Food Sci. Technol. 42: 956–962 (2009)

    Article  CAS  Google Scholar 

  8. Liu Q, Kong BH, Xiong YL, Xia XF. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118: 403–410 (2010)

    Article  CAS  Google Scholar 

  9. Benjakul S, Lertittikul W, Bauer F. Antioxidant activity of Maillard reaction products from a porcine plasma protein-sugar model system. Food Chem. 93: 189–196 (2005)

    Article  CAS  Google Scholar 

  10. Laroque D, Inisan C, Berger C, Vouland É, Dufossé L, Guérard F. Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 111: 1032–1042 (2008)

    Article  CAS  Google Scholar 

  11. AOAC. Official Methods of Analysis. 17th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA ( 2000)

    Google Scholar 

  12. Recamales ÁF, Sayago A, González-Miret ML, Hernanz D. The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Res. Int. 39: 220–229 (2006)

    Article  CAS  Google Scholar 

  13. Benjakul S, Morrissey MT. Protein hydrolysates from Pacific whiting solid waste. J. Agr. Food Chem. 45: 3423–3430 (1997)

    Article  CAS  Google Scholar 

  14. Oyaizu M. Antioxidant activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. J. Jpn. Soc. Food Sci. Technol. 35: 771–775 (1986)

    Article  Google Scholar 

  15. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agr. Food Chem. 54: 1151–1157 (2006)

    Article  CAS  Google Scholar 

  16. Lee JH, Kim HR, Kim J, Jang YS. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. Saboten. J. Agr. Food Chem. 50: 6490–6496 (2002)

    Article  CAS  Google Scholar 

  17. Laemmli UK. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680–685 (1970)

    Article  CAS  Google Scholar 

  18. Morales FJ, Jiménez-Pérez S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 72: 119–125 (2001)

    Article  CAS  Google Scholar 

  19. Adams A, Borreli R, Flogiano V, Kimpe N. Thermal degradation studies of foods melanoidins. J. Agr. Food Chem. 53: 4136–4142 (2005)

    Article  CAS  Google Scholar 

  20. Sun WZ, Zhao MM, Cui C, Zhao QZ, Yang B. Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Sci. 86: 276–282 (2010)

    Article  CAS  Google Scholar 

  21. Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A. Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems. J. Food Sci. 66: 926–931 (2001)

    Article  CAS  Google Scholar 

  22. Brands CMJ, Alink GM, van Boekel MJS, Jongen WMF. Mutagenicity of heated sugar-casein systems: Effect of the Maillard reaction. J. Agr. Food Chem. 48: 2271–2275 (2000)

    Article  CAS  Google Scholar 

  23. Naranjo GB, Malec LS, Vigo MS. Reducing sugars effect on available lysine loss of casein by moderate heat treatment. Food Chem. 62: 309–313 (1998)

    Article  CAS  Google Scholar 

  24. Lan XH, Liu P, Xia SQ, Jia CS, Mukunzi D, Zhang XM, Xia WS, Tian HX, Xiao ZB. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylosesoybean peptide system: Further insights into thermal degradation and cross-linking. Food Chem. 120: 967–972 (2010)

    Article  CAS  Google Scholar 

  25. Rufian-Henares JA, Delgado-Andrade C, Morales FJ. Occurrence of acetic acid and formic acid in breakfast cereals. J. Sci. Food Agr. 86: 1321–1327 (2006)

    Article  CAS  Google Scholar 

  26. Huber C, Wähtershäser G. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science 281: 670–672 (1998)

    Article  CAS  Google Scholar 

  27. Berg HE, van Boekel MAJS. Degradation of lactose during heating of milk. 1 Reaction pathways. Neth. Milk Dairy J. 48: 157–175 (1994)

    CAS  Google Scholar 

  28. Matmaroh K, Benjakul S, Tanaka M. Effect of reactant concentrations on the Maillard reaction in a fructose-glycine model system and the inhibition of black tiger shrimp polyphenoloxidase. Food Chem. 98: 1–8 (2006)

    Article  CAS  Google Scholar 

  29. Aboubakar, Njintang NY, Scher J, Mbofung CMF. Texture, microstructure and physicochemical characteristics of taro (Colocasia esculenta) as influenced by cooking conditions. J. Food Eng. 91: 373–379 (2009)

    Article  CAS  Google Scholar 

  30. Chevalier F, Chobert JM, Mollé D, Haertlé T. Maillard glycation of β-lactoglobulin with several sugars: Comparative study of the properties of the obtained polymers and of the substituted sites. Le Lait 81: 651–666 (2001)

    Article  CAS  Google Scholar 

  31. Álvarez C, GarcÍa V, Rendueles M, DÍaz M. Functional properties of isolated porcine blood proteins modified by Maillard reaction. Food Hydrocolloid. 28: 267–274 (2012)

    Article  Google Scholar 

  32. Kim JS, Lee YS. Antioxidant activity of melanoidins from different sugar/amino acid model systems: Influence of the enantiomer type. Food Sci. Technol. Int. 15: 291–297 (2009)

    Article  CAS  Google Scholar 

  33. Eichner K. Antioxidant effect of Maillard reaction intermediates. Prog. Food Nutr. Sci. 5: 441–451 (1981)

    CAS  Google Scholar 

  34. Sun Q, Luo YK. Effect of Maillard reaction conditions on radical scavenging activity of porcine haemoglobin hydrolysate-sugar model system. Int. J. Food Sci. Tech. 46: 358–364 (2011)

    Article  CAS  Google Scholar 

  35. Morales FJ. Assessing the non-specific hydroxyl radical scavenging properties of melanoidins in a Fenton-type reaction system. Anal. Chim. Acta 534: 171–176 (2005)

    Article  CAS  Google Scholar 

  36. Jing H, Kitts DD. Chemical and biochemical properties of caseinsugar Maillard reaction products. Food Chem. Toxicol. 40: 1007–1015 (2002)

    Article  CAS  Google Scholar 

  37. Dean RT, Hunt JV, Grant AJ, Yamamoto Y, Niki E. Free radical damage to proteins: the influence of relative delocalization of radical generation, antioxidants, and target proteins. Free Radical Bio. Med. 11: 161–168 (1991)

    Article  CAS  Google Scholar 

  38. Murakami M, Shigeeda A, Danjo K, Yamagushi T, Takamura H, Matoba T. Radical-scavenging activity and brightly colored pigments in the early stage of the Maillard reaction. J. Food Sci. 67: 93–96 (2002)

    Article  CAS  Google Scholar 

  39. Hiller B, Lorenzen PC. Functional properties of milk proteins as affected by Maillard reaction induced oligomerisation. Food Res. Int. 43: 1155–1166 (2010)

    Article  CAS  Google Scholar 

  40. Lan XH, Liu P, Xia SQ, Jia CS, Mukunzi D, Zhang XM, Xia WS, Tian HX, Xiao ZB. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose-soybean peptide system: Further insights into thermal degradation and cross-linking.. Food Chem. 120: 967–972 (2010)

    Article  CAS  Google Scholar 

  41. Chen XM, Kitts DD. Antioxidant activity and chemical properties of crude and fractionated Maillard reaction products derived from four sugaramino acid Maillard reaction model systems. Ann. NY Acad. Sci. 1126: 220–224 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Li, J., Kong, B. et al. Antioxidant capacity of maillard reaction products formed by a porcine plasma protein hydrolysate-sugar model system as related to chemical characteristics. Food Sci Biotechnol 23, 33–41 (2014). https://doi.org/10.1007/s10068-014-0005-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0005-8

Keywords

Navigation