Skip to main content
Log in

Statistical modeling and optimization for exopolysaccharide production by Lactobacillus confusus in submerged fermentation under high salinity stress

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In the last two decades, many studies have been reported that a high concentration of NaCl suppresses exopolysaccharide (EPS) production in lactic acid bacteria. In the present study, however, the enhancement of EPS production by Lactobacillus confusus under high salinity stress in submerged fermentation was demonstrated using response surface methodology via a full factorial design. Under the optimized conditions of 3.33% NaCl, 20 g/L sucrose, and 35 h of incubation, the EPS yield was 10.87 g/ L with 178% higher than the maximum yield (6.12 g/L of EPS) produced from the modified MRS medium without NaCl. Biomass production was independent of EPS production. A high yield of biomass was obtained in the culture with 0.23% NaCl. This results indicate that high salinity stress by NaCl can enhance EPS production in submerged fermentation in uncontrolled pH cultivations by inducing the production of cell-associated dextransucrase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177 (1999)

    Article  Google Scholar 

  2. De Vuyst L, De Vin F, Vaningelgem F, Degeest B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707 (2001)

    Article  Google Scholar 

  3. Malik A, Radji M, Kralj S, Dijkhuizen L. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol. Lett. 300: 131–138 (2009)

    Article  CAS  Google Scholar 

  4. Svensson M, Waak E, Svensson U, Radstrom P. Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. Appl. Environ. Microb. 71: 6398–6400 (2005)

    Article  CAS  Google Scholar 

  5. Boels IC, van Kranenburg R, Kanning MW, Chong BF, de Vos WM, Kleerebezem M. Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl. Environ. Microb. 69: 5029–5031 (2003)

    Article  CAS  Google Scholar 

  6. Jolly L, Vincent SJ, Duboc P, Neeser JR. Exploiting expolysaccharides from lactic acid bacteria. Anton. Leeuw. Int. J. G. 82: 367–374 (2002)

    Article  CAS  Google Scholar 

  7. Looijesteijn PJ, Hugenholtz J. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J. Biosci. Bioeng. 88: 178–182 (1999)

    Article  CAS  Google Scholar 

  8. Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64: 71–80 (2001)

    Article  CAS  Google Scholar 

  9. Torino MI, Hebert EM, Mozzi F, Font de Valdez G. Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium. J. Appl. Microbiol. 99: 1123–1129 (2005)

    Article  CAS  Google Scholar 

  10. Velasco S, Arskold E, Paese M, Grage H, Irastorza A, Radstrom P, van Niel EW. Environmental factors influencing growth of and exopolysaccharide formation by Pediococcus parvulus 2.6. Int. J. Food. Microbiol. 111: 252–258 (2006)

    Article  CAS  Google Scholar 

  11. Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohyd. Res. 343: 1446–1455 (2008)

    Article  CAS  Google Scholar 

  12. Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C. Characterization of dextranproducing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol. Lett. 311: 18–26 (2010)

    Article  CAS  Google Scholar 

  13. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Siméon M, Gabriel B, Fontagn-Faucher C. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agr. Food Chem. 57: 10889–10897 (2009)

    Article  CAS  Google Scholar 

  14. Ahmed ZR, Siddiqui K, Arman M, Ahmed N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohyd. Res. 90: 441–446 (2012)

    CAS  Google Scholar 

  15. Kuntiya A, Hanmoungjai P, Techapun C, Sasaki K, Seesuriyachan P. Influence of pH, sucrose concentration, and agitation speed on exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as a raw material substitute. Maejo Int. J. Sci. Tech. 4: 318–330 (2010)

    CAS  Google Scholar 

  16. Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes. Biosci. Biotech. Bioch. 74: 423–426 (2010)

    Article  CAS  Google Scholar 

  17. Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C. Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract, and beef extract. Songklanakarin J. Sci. Technol. 33: 379–387 (2011)

    CAS  Google Scholar 

  18. Duenas M, Munduate A, Perea A, Irastorza A. Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int. J. Food Microbiol. 87: 113–120 (2003)

    Article  CAS  Google Scholar 

  19. Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C, Chaiyaso T, Leksawasdi N. Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress. Biosci. Biotech. Bioch. 76: 912–917 (2012)

    Article  CAS  Google Scholar 

  20. Miller GL. Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  21. Kang YS, Park W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109: 118–123 (2010)

    Article  CAS  Google Scholar 

  22. Shaileshkumar DS, Lele SS. Statistical optimization of media for dextran production by Leuconostoc sp., isolated from fermented idli batter. Food. Sci. Biotechnol. 19: 471–478 (2010)

    Article  Google Scholar 

  23. Prasertsan P, Wichienchot S, Doelle H, Kennedy JF. Optimization for biopolymer production by Enterobacter cloacae WD7. Carbohyd. Res. 71: 468–475 (2008)

    CAS  Google Scholar 

  24. Dols M, Chraibi W, Remaud-Simeon M, Lindley ND, Monsan PF. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Environ. Microb. 63: 2159–2165 (1997)

    CAS  Google Scholar 

  25. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113–130 (1990)

    Article  CAS  Google Scholar 

  26. van Geel-Schutten GH, Flesch F, Ten Brink B, Smith MR, Dijkhuizen L. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl. Microbiol. Biot. 50: 697–703 (1998)

    Article  Google Scholar 

  27. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 7: 113–130 (1990)

    CAS  Google Scholar 

  28. Shukla S, Goyal A. 16S rRNA-based identification of a glucanhyperproducing Weissella confusa. Enzyme Res. doi:10.4061/2011/250842 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phisit Seesuriyachan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seesuriyachan, P. Statistical modeling and optimization for exopolysaccharide production by Lactobacillus confusus in submerged fermentation under high salinity stress. Food Sci Biotechnol 21, 1647–1654 (2012). https://doi.org/10.1007/s10068-012-0219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0219-6

Keywords

Navigation