Skip to main content

Advertisement

Log in

Biosimilars in rheumatic diseases: structural and functional variability that may impact clinical and regulatory decisions

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Biologics as therapeutic interventions for human disease represent both a distinctly modern novelty and an echo of ancient, or at least old, medical practice. The similarity lies in the sense that in both the synthetic effort occurs in living organisms (an extract of a plant, animal tissue, or a cell culture) while the difference is apparent in the bioengineering required in modern methods and the corresponding flexibility to customize the therapeutic product. Although the concept of looking to living systems as a source of medically useful compounds either for research or for actual patient care has never vanished, the development of biochemistry and advances in medicinal chemistry made production by total synthesis the standard for a safe, reliable, and commercial drug production at sufficient scale. In this interval was where much of the modern apparatus for approving medical therapies came to be developed, and as such, the most proper extension of the regulatory regime to modern biologics is not entirely obvious. In particular, the notion of generics for off-patent conventional pharmaceuticals and their role in the marketplace with respect to increasing the accessibility of treatment is not congruent with the relationship between what are known as biosimilars and off-patent originating biologics. In this article, we review elements of the scientific basis for challenges in the production, use, and regulation of biosimilars. In light of these advances, we propose suggestions to modify constraints on biosimilar regulations in the interest of patient care and access to therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FDA:

Food and Drug Administration

UV-CD:

Ultraviolet circular dichroism

HPLC:

High-performance liquid chromatography

SEC-MALS:

Size-exclusion chromatography with multi-angle light scattering

SPR:

Surface plasmon resonance

ELISA:

Enzyme-linked immunosorbent assay

RCT:

Randomized controlled trial

EPO:

Erythropoietin

GM-CSF:

Granulocyte macrophage colony-stimulating factor

EMA:

European Medicines Agency

PK:

Pharmacokinetics

RA:

Rheumatoid arthritis

AS:

Ankylosing spondylitis

US:

United States

EU:

European Union

TNF:

Tumor necrosis factor

UC:

Ulcerative colitis

CD:

Crohn’s disease

PsO:

Psoriasis

JIA:

Juvenile idiopathic arthritis

PsA:

Psoriatic arthritis

BLA:

Biologics license application

JAK:

Janus kinase

References

  1. Holloway C, Mueller-Berghaus J, Lima BS, Lee SL, Wyatt JS, Nicholas JM, Crommelin DJ (2012) Scientific considerations for complex drugs in light of established and emerging regulatory guidance. Ann N Y Acad Sci 1276:26–36

    Article  PubMed  Google Scholar 

  2. Miletich J, Eich G, Grampp G, Mounho B (2011) Biosimilars 2.0: guiding principles for a global “patients first” standard. MAbs 3:318–325

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwerin AV, Stoff H, Wahrig B (2013) Biologics, a history of agents made from living organisms in the twentieth century. Pickering & Chatto, London

    Google Scholar 

  4. Fathi R, Armstrong AW (2015) The role of biologic therapies in dermatology. Med Clin North Am 99:1183–1194

    Article  PubMed  Google Scholar 

  5. Williams JA (2016) GLP-1 mimetic drugs and the risk of exocrine pancreatic disease: cell and animal studies. Pancreatology 16:2–7

    Article  CAS  PubMed  Google Scholar 

  6. Gupta V (2013) Glucagon-like peptide-1 analogues: an overview. Indian J Endocrinol Metab 17:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cote-Daigneault J, Bouin M, Lahaie R, Colombel JF, Poitras P (2015) Biologics in inflammatory bowel disease: what are the data? United European Gastroenterol J 3:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mammalian Cell Cultures for Biologics Manufacturing. (2014) Zhou, Weichang, and Anne, eds. Springer-Verlag Berlin Heidelberg.

  9. Hendrick JP, Hartl FU (1995) The role of molecular chaperones in protein folding. FASEB J 9:1559–1569

    CAS  PubMed  Google Scholar 

  10. Ithuralde RE, Turjanski AG (2016) Phosphorylation regulates the bound structure of an intrinsically disordered protein: the p53-TAZ2 case. PLoS One 11:e0144284

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang Y, Li C, Li J, Gabrielson JP, Wen J (2015) Technical decision making with higher order structure data: higher order structure characterization during protein therapeutic candidate screening. J Pharm Sci 104:1533–1538

    Article  CAS  PubMed  Google Scholar 

  12. Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100

    Article  CAS  PubMed  Google Scholar 

  13. FDA Briefing Document, Arthritis Advisory Committee Meeting. (2016) http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM484859. pdf.

  14. Kim MS, Zhong J, Pandey A (2016) Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics 16:700–714

    Article  CAS  PubMed  Google Scholar 

  15. Heaven MR, Funk AJ, Cobbs AL, Haffey WD, Norris JL, McCullumsmith RE, Greis KD (2016) Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay. J Mass Spectrom 51:1–11

    Article  CAS  PubMed  Google Scholar 

  16. Madsen JA, Yin Y, Qiao J, Gill V, Renganathan K, Fu WY, Smith S, Anderson J (2016) Covalent labeling denaturation mass spectrometry for sensitive localized higher order structure comparisons. Anal Chem 88:2478–2488

    Article  CAS  PubMed  Google Scholar 

  17. Yu X, Petritis B, LaBaer J (2016) Advancing translational research with next-generation protein microarrays. Proteomics 16:1238–1250

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taghavi, F., M. Habibi-Rezaei, M. Amani, A. A. Saboury, and A. A. Moosavi-Movahedi. 2016. The status of glycation in protein aggregation. Int. J. Biol. Macromol.

  20. McKoy JM, Stonecash RE, Cournoyer D, Rossert J, Nissenson AR, Raisch DW, Casadevall N, Bennett CL (2008) Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion 48:1754–1762

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Groot AS, Terry F, Cousens L, Martin W (2013) Beyond humanization and de-immunization: tolerization as a method for reducing the immunogenicity of biologics. Expert Rev Clin Pharmacol 6:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dentali F, Donadini MP, Clark N, Crowther MA, Garcia D, Hylek E, Witt DM, Ageno W (2011) Brand name versus generic warfarin: a systematic review of the literature. Pharmacotherapy 31:386–393

    Article  PubMed  Google Scholar 

  23. Yamada M, Welty TE (2011) Generic substitution of antiepileptic drugs: a systematic review of prospective and retrospective studies. Ann Pharmacother 45:1406–1415

    Article  PubMed  Google Scholar 

  24. Privitera M (2013) Generic substitution of antiepileptic drugs: what’s a clinician to do? Neurol Clin Pract 3:161–164

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jelkmann W (2010) Biosimilar epoetins and other “follow-on” biologics: update on the European experiences. Am J Hematol 85:771–780

    Article  PubMed  Google Scholar 

  26. Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R (2011) Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol 29:310–312

    Article  CAS  PubMed  Google Scholar 

  27. Grillberger L, Kreil TR, Nasr S, Reiter M (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hillebrecht JR, Chong S (2008) A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol 8:58

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sullivan CJ, Pendleton ED, Sasmor HH, Hicks WL, Farnum JB, Muto M, Amendt EM, Schoborg JA, Martin RW, Clark LG, Anderson MJ, Choudhury A, Fior R, Lo YH, Griffey RH, Chappell SA, Jewett MC, Mauro VP, Dresios J (2016) A cell-free expression and purification process for rapid production of protein biologics. Biotechnol J 11:238–248

    Article  CAS  PubMed  Google Scholar 

  30. Haas JS, Phillips KA, Gerstenberger EP, Seger AC (2005) Potential savings from substituting generic drugs for brand-name drugs: medical expenditure panel survey, 1997-2000. Ann Intern Med 142:891–897

    Article  PubMed  Google Scholar 

  31. Menditto E, Orlando V, Coretti S, Putignano D, Fiorentino D, Ruggeri M (2015) Doctors commitment and long-term effectiveness for cost containment policies: lesson learned from biosimilar drugs. Clinicoecon Outcomes Res 7:575–581

    PubMed  PubMed Central  Google Scholar 

  32. Mulcahy, A. W., Z. Predmore, and S. Mattke. 2014. The Cost Savings Potential of Biosimilar Drugs in the United States. http://www.rand.org/pubs/perspectives/PE127.html.

  33. European Medicines Agency. 2016. http://www.ema.europa.eu/ema/.

  34. Yoo DH, Racewicz A, Brzezicki J, Yatsyshyn R, Arteaga ET, Baranauskaite A, Abud-Mendoza C, Navarra S, Kadinov V, Sariego IG, Hong SS, Lee SY, Park W (2015) A phase III randomized study to evaluate the efficacy and safety of CT-P13 compared with reference infliximab in patients with active rheumatoid arthritis: 54-week results from the PLANETRA study. Arthritis Res Ther 18:82

    Article  Google Scholar 

  35. Yoo, D. H., N. Prodanovic, J. Jaworski, P. Miranda, E. Ramiterre, A. Lanzon, A. Baranauskaite, P. Wiland, C. Abud-Mendoza, B. Oparanov, S. Smiyan, H. Kim, S. J. Lee, S. Kim, and W. Park. 2016. Efficacy and safety of CT-P13 (biosimilar infliximab) in patients with rheumatoid arthritis: comparison between switching from reference infliximab to CT-P13 and continuing CT-P13 in the PLANETRA extension study. Ann. Rheum. Dis.

  36. FDA Briefing Document, 2016 Arthritis Advisory Committee Meeting, July 12 36 http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM510293.pdf.

  37. FDA Briefing Document, 2016 Arthritis Advisory Committee Meeting, July 13 37 http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM510493. pdf.

  38. Emery, P., J. Vencovsky, A. Sylwestrzak, P. Leszczynski, W. Porawska, A. Baranauskaite, V. Tseluyko, V. M. Zhdan, B. Stasiuk, R. Milasiene, A. A. Barrera Rodriguez, S. Y. Cheong, and J. Ghil. 2015. A phase III randomised, double-blind, parallel-group study comparing SB4 with etanercept reference product in patients with active rheumatoid arthritis despite methotrexate therapy. Ann. Rheum. Dis.

  39. Schulz M, Bonig H (2016) Update on biosimilars of granulocyte colony-stimulating factor—when no news is good news. Curr Opin Hematol 23:61–66

    Article  CAS  PubMed  Google Scholar 

  40. Ebbers HC, Chamberlain P (2016) Controversies in establishing biosimilarity: extrapolation of indications and global labeling practices. BioDrugs 30:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nonproprietary naming of biological products: guidance for industry.2015 http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm459987. pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Brahn.

Ethics declarations

Disclosures

None.

Funding statement

Supported in part by UCLA-Caltech Medical Scientist Training Program (NIH T32GM008042) and ACR-Rheumatology Research Foundation Medical Student Preceptorship grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhanpal, A., Brahn, E. Biosimilars in rheumatic diseases: structural and functional variability that may impact clinical and regulatory decisions. Clin Rheumatol 35, 2869–2875 (2016). https://doi.org/10.1007/s10067-016-3430-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-016-3430-7

Keywords

Navigation