Skip to main content

Advertisement

Log in

Perspectives of the relationship between IL-7 and autoimmune diseases

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Interleukin (IL)-7 is one of the IL-2 family cytokines comprised of IL-2, IL-4, IL-7, IL-9, IL-15, as well as IL-21. IL-7 is mainly secreted by stroma cells in primary lymphoid tissues, playing an essential role in the program of T cell development. Recently, studies have revealed that physiological function exerted by immunocytes can be influenced by aberrant IL-7 signaling, which is common in abnormal autoimmunity regulation. There is also increasing evidence that IL-7 is involved in several autoimmune diseases, such as rheumatoid arthritis, type I diabetes, multiple sclerosis and systemic lupus erythematosus, etc. Targeting components in IL-7 signaling pathways may have potential significance for treating numerous autoimmune diseases. In this review, we therefore summarize our current understandings regarding the relationship between IL-7 and autoimmune diseases so as to render more valuable information on this kind of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bikker A, Hack CE, Lafeber FP, van Roon JA (2012) Interleukin-7: a key mediator in T cell-driven autoimmunity, inflammation, and tissue destruction. Curr Pharm Des 18(16):2347–2356

    Article  PubMed  CAS  Google Scholar 

  2. van Roon JA, Verweij MC, Wijk MW et al (2005) Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum 52(6):1700–1710

    Article  PubMed  Google Scholar 

  3. Harrison C (2012) Autoimmune disease: targeting IL-7 reverses type 1 diabetes. Nat Rev Drug Discov 11(8):599

    Article  PubMed  CAS  Google Scholar 

  4. Liu X, Leung S, Wang C et al (2010) Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med 16(2):191–197

    Article  PubMed  CAS  Google Scholar 

  5. Gregory SG, Schmidt S, Seth P et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39(9):1083–1091

    Article  PubMed  CAS  Google Scholar 

  6. Badot V, Luijten RK, van Roon JA et al (2013) Serum soluble interleukin 7 receptor is strongly associated with lupus nephritis in patients with systemic lupus erythematosus. Ann Rheum Dis 72(3):453–456

    Article  PubMed  CAS  Google Scholar 

  7. Lundström W, Highfill S, Walsh ST et al (2013) Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A 110(19):E1761–E1770

    Article  PubMed  Google Scholar 

  8. Pillai M, Torok-Storb B, Iwata M (2004) Expression and function of IL-7 receptors in marrow stromal cells. Leuk Lymphoma 45(12):2403–2408

    Article  PubMed  CAS  Google Scholar 

  9. McElroy CA, Dohm JA, Walsh ST (2009) Structural and biophysical studies of the human IL-7/IL-7Ralpha complex. Structure 17(1):54–65

    Article  PubMed  CAS  Google Scholar 

  10. Ceredig R, Rolink AG (2012) The key role of IL-7 in lymphopoiesis. Semin Immunol 24(3):159–164

    Article  PubMed  CAS  Google Scholar 

  11. Hong C, Luckey MA, Park J-H (2012) Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 24(3):151–158

    Article  PubMed  CAS  Google Scholar 

  12. Jiang Q, Huang J, Li WQ et al (2007) Role of the intracellular domain of IL-7 receptor in T cell development. J Immunol 178(1):228–234

    PubMed  CAS  Google Scholar 

  13. Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154

    Article  PubMed  CAS  Google Scholar 

  14. Rose T, Pillet AH, Lavergne V et al (2010) Interleukin-7 compartmentalizes its receptor signaling complex to initiate CD4 T lymphocyte response. J Biol Chem 285(20):14898–14908

    Article  PubMed  CAS  Google Scholar 

  15. Benbernou N, Muegge K, Durum SK (2000) Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 275(10):7060–7065

    Article  PubMed  CAS  Google Scholar 

  16. Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19(8):1933–1940

    Article  PubMed  CAS  Google Scholar 

  17. Palmer MJ, Mahajan VS, Trajman LC et al (2008) Interleukin-7 receptor signaling network: an integrated systems perspective. Cell Mol Immunol 5(2):79–89

    Article  PubMed  CAS  Google Scholar 

  18. Jiang Q, Li WQ, Aiello FB et al (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16(4–5):513–533

    Article  PubMed  CAS  Google Scholar 

  19. Ivashkiv LB, Hu X (2004) Signaling by STATs. Arthritis Res Ther 6(4):159–168

    Article  PubMed  CAS  Google Scholar 

  20. Corfe SA, Paige CJ (2012) The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol 24(3):198–208

    Article  PubMed  CAS  Google Scholar 

  21. Smyth CM, Ginn SL, Deakin CT et al (2007) Limiting {gamma}c expression differentially affects signaling via the interleukin IL-7 and IL-15 receptors. Blood 110(1):91–98

    Article  PubMed  CAS  Google Scholar 

  22. Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217

    Article  PubMed  CAS  Google Scholar 

  23. Boyman O, Ramsey C, Kim DM, Sprent J et al (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180(11):7265–7275

    PubMed  CAS  Google Scholar 

  24. El-Kassar N, Flomerfelt FA, Choudhury B et al (2012) High levels of IL-7 cause dysregulation of thymocyte development. Int Immunol 24(10):661–671

    Article  PubMed  CAS  Google Scholar 

  25. Milne CD, Paige CJ (2006) IL-7: a key regulator of B lymphopoiesis. Semin Immunol 18(1):20–30

    Article  PubMed  CAS  Google Scholar 

  26. Akashi K, Kondo M, von Freeden-Jeffry U et al (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89(7):1033–1041

    Article  PubMed  CAS  Google Scholar 

  27. Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22(2):168–176

    Article  PubMed  CAS  Google Scholar 

  28. Holm AM, Aukrust P, Damås JK, Müller F et al (2005) Abnormal interleukin-7 function in common variable immunodeficiency. Blood 105(7):2887–2890

    Article  PubMed  CAS  Google Scholar 

  29. Lundstrom W, Fewkes NM, Mackall CL (2012) IL-7 in human health and disease. Semin Immunol 24(3):218–224

    Article  PubMed  Google Scholar 

  30. Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864

    Article  PubMed  CAS  Google Scholar 

  31. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361

    Article  PubMed  CAS  Google Scholar 

  32. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255

    Article  PubMed  CAS  Google Scholar 

  33. Fry TJ, Mackall CL (2002) Interleukin-7: from bench to clinic. Blood 99(11):3892–3904

    Article  PubMed  CAS  Google Scholar 

  34. van Amelsfort JM, van Roon JA, Noordegraaf M et al (2007) Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 56(3):732–742

    Article  PubMed  Google Scholar 

  35. Churchman SM, Ponchel F (2008) Interleukin-7 in rheumatoid arthritis. Rheumatology (Oxford) 47(6):753–759

    Article  CAS  Google Scholar 

  36. Natsumeda M, Nishiya K, Ota Z (1993) Stimulation by interleukin-7 of mononuclear cells in peripheral blood, synovial fluid and synovial tissue from patients with rheumatoid arthritis. Acta Med Okayama 47(6):391–397

    PubMed  CAS  Google Scholar 

  37. Sawa S, Kamimura D, Jin GH et al (2006) Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4+ T cells. J Exp Med 203(6):1459–1470

    Article  PubMed  CAS  Google Scholar 

  38. Harada S, Yamamura M, Okamoto H et al (1999) Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 42(7):1508–1516

    Article  PubMed  CAS  Google Scholar 

  39. van Roon JA, Glaudemans KA, Bijlsma JW et al (2003) Interleukin 7 stimulates tumour necrosis factor alpha and Th1 cytokine production in joints of patients with rheumatoid arthritis. Ann Rheum Dis 62(2):113–119

    Article  PubMed  Google Scholar 

  40. Pickens SR, Chamberlain ND, Volin MV et al (2011) Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 63(10):2884–2893

    Article  PubMed  CAS  Google Scholar 

  41. Rekha P, Conaghan PG, Paul E et al (2012) Progression to rheumatoid arthritis in early inflammatory arthritis is associated with low IL-7 serum levels. Ann Rheum Dis 72(6):1032–1036

    Google Scholar 

  42. Makino T, Fukushima S, Wakasugi S et al (2009) Decreased serum IL-7 levels in patients with systemic sclerosis. Clin Exp Rheumatol 27(3 Suppl 54):68–69

    PubMed  CAS  Google Scholar 

  43. Kader HA, Tchernev VT, Satyaraj E et al (2005) Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn's disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol 100(2):414–423

    Article  PubMed  CAS  Google Scholar 

  44. Lee LF, Logronio K, Tu GH et al (2012) Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. Proc Natl Acad Sci U S A 109(31):12674–12679

    Article  PubMed  CAS  Google Scholar 

  45. Maahs DM, West NA, Lawrence JM et al (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 39(3):481–497

    Article  PubMed  Google Scholar 

  46. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    Article  PubMed  CAS  Google Scholar 

  47. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    Article  PubMed  CAS  Google Scholar 

  48. Lee LF, Axtell R, Tu GH et al (2011) IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-β in multiple sclerosis. Sci Transl Med 3(93):93ra68

    Article  PubMed  CAS  Google Scholar 

  49. Penaranda C, Kuswanto W, Hofmann J et al (2012) IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 109(31):12668–12673

    Article  PubMed  CAS  Google Scholar 

  50. Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895

    Article  PubMed  CAS  Google Scholar 

  51. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113(6):788–794

    PubMed  CAS  Google Scholar 

  52. McFarlin DE, McFarland HF (1982) Multiple sclerosis (first of two parts). N Engl J Med 307(19):1183–1188

    Article  PubMed  CAS  Google Scholar 

  53. McFarlin DE, McFarland HF (1982) Multiple sclerosis (second of two parts). N Engl J Med 307(20):1246–1251

    Article  PubMed  CAS  Google Scholar 

  54. Fernald GH, Yeh RF, Hauser SL et al (2005) Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. J Neuroimmunol 167(1–2):157–169

    Article  PubMed  CAS  Google Scholar 

  55. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  PubMed  CAS  Google Scholar 

  56. Kreft KL, Verbraak E, Wierenga-Wolf AF et al (2012) Decreased systemic IL-7 and soluble IL-7Rα in multiple sclerosis patients. Genes Immun 13(7):587–592

    Article  PubMed  CAS  Google Scholar 

  57. Walline CC, Kanakasabai S, Bright JJ (2011) IL-7Rα confers susceptibility to experimental autoimmune encephalomyelitis. Genes Immun 12(1):1–14

    Article  PubMed  CAS  Google Scholar 

  58. Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    Article  PubMed  CAS  Google Scholar 

  59. McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10(3):314–324

    Article  PubMed  CAS  Google Scholar 

  60. Chen Y, Langrish CL, McKenzie B et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116(5):1317–1326

    Article  PubMed  CAS  Google Scholar 

  61. Tiffin N, Adeyemo A, Okpechi I (2013) A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J Rare Dis 8(1):2

    Article  PubMed  Google Scholar 

  62. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121

    Article  PubMed  CAS  Google Scholar 

  63. Pons-Estel GJ, Alarcón GS, Scofield L et al (2010) Understanding the epidemiology and progression of systemic lupus erythematosus. Semin Arthritis Rheum 39(4):257–268

    Article  PubMed  Google Scholar 

  64. Pan HF, Ye DQ, Li XP (2008) Type 17 T-helper cells might be a promising therapeutic target for systemic lupus erythematosus. Nat Clin Pract Rheumatol 4(7):352–353

    PubMed  CAS  Google Scholar 

  65. Ohl K, Tenbrock K (2011) Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:432595

    Article  PubMed  Google Scholar 

  66. Ambrosi A, Espinosa A, Wahren-Herlenius M (2012) IL-17: a new actor in IFN-driven systemic autoimmune diseases. Eur J Immunol 42(9):2274–2284

    Article  PubMed  CAS  Google Scholar 

  67. Yang Y, Xiao X, Li F et al (2012) Increased IL-7 expression in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 53(2):1012–1017

    Article  PubMed  CAS  Google Scholar 

  68. Bikker A, Moret FM, Kruize AA et al (2012) IL-7 drives Th1 and Th17 cytokine production in patients with primary SS despite an increase in CD4 T cells lacking the IL-7Rα. Rheumatology (Oxford) 51(6):996–1005

    Article  CAS  Google Scholar 

  69. Ben-David H, Sharabi A, Parameswaran R et al (2009) A tolerogenic peptide down-regulates mature B cells in bone marrow of lupus-afflicted mice by inhibition of interleukin-7, leading to apoptosis. Immunology 128(2):245–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the National Natural Science Foundation of China (30830089), Specialized Research Fund for the Doctoral Program of Higher Education of China (20113420120008), and the Anhui Provincial Natural Science Foundation (11040606M183).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Qing Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XS., Li, BZ., Hu, LF. et al. Perspectives of the relationship between IL-7 and autoimmune diseases. Clin Rheumatol 32, 1703–1709 (2013). https://doi.org/10.1007/s10067-013-2360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-013-2360-x

Keywords

Navigation