Skip to main content

Advertisement

Log in

Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The present work illustrates the monitoring system of the Ingelsberg slope (Bad Hofgastein, Austria), which hosts one of the most dangerous landslides in the Salzburg Land. It is a rock fall, which can be considered as representative of landslides commonly occurring in the Alpine area. During the monitoring campaign (March 2013–July 2014), a rock fall occurred at the end of April, 2013 that involved 20–40 m3 of rocks. The comparison of surface measurements (by Ground-Based Interferometric Synthetic Aperture Radar—GB-InSAR) with measurements in depth (by extensometers) allowed the understanding of the failure process of the rock mass. Data are discussed taking into account meteorological conditions antecedent to the landslide triggering, indicating that factors such as rapid snow melting (added to first spring rainfall events) and rock thermal dilatation are very important in slopes located far below the permafrost line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allasia P, Manconi A, Giordan D, Baldo M, Lollino G (2013) ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios. Sensors 13:8285–8302

    Article  Google Scholar 

  • APCC (2014) Summary for Policymakers (SPM). In: Austrian Assessment Report Climate Change 2014 (AAR14), Austrian Panel on Climate Change (APCC). https://www.ccca.ac.at/fileadmin/00_DokumenteHauptmenue/03_Aktivitaeten/APCC/summarys/Synthesis.pdf

  • Berz G (2009) Natural disasters and climate change in the Alps. In: Proc. Conf. Global Change and Sustainable Development in Mountain Regions, Alpine space—man & environment. Innsbruck Univ. Press, vol. 7, pp 53–60

  • Bozzano F, Mazzanti P, Prestininzi A, Scarascia Mugnozza G (2010) Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides 7(3):381–385

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale

    Google Scholar 

  • Crosta GB, Frattini P, Castellanza R, Friggerio G, Di Prisco C, Volpi G, De Caro M, Cancelli P, Tamburini A, Alberto W, Bertolo D (2015) Investigation, monitoring and modelling of a rapidly evolving rockslide: The Mt. de la Saxe Case Study. In: Lollino G et al (eds) Engineering geology for society and territory, vol 2. Springer International Publishing, Switzerland, pp 349–354

    Chapter  Google Scholar 

  • D’Amato J, Hantz D, Guerin A, Jaboyedoff M, Baillet L, Mariscal A (2016) Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat Hazards Earth Syst Sci 16:719–735

    Article  Google Scholar 

  • Gigli G, Casagli N (2013) Extraction of rock mass structural data from high resolution laser scanning products. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 89–94

    Chapter  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Kieffer DS, Valentine G, Unterberger K (2016) Continuous real-time slope monitoring of the Ingelsberg in Bad Hofgastein, Austria. Geomechanics Tunn 9(1):37–44

    Article  Google Scholar 

  • Krähenbühl R (2004) Temperatur und Kluftwasser als Ursachen von Felssturz. Bulletin für angewandte Geologie 7:19–35

    Google Scholar 

  • Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 31–61

    Chapter  Google Scholar 

  • Loew S, Gschwind S, Gischig V, Keller-Signer A, Valenti G (2016) Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides. doi:10.1007/s10346-016-0701-y

    Google Scholar 

  • Mazzanti P (2011) Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes. Geotech Instrum News 29(2):25–28

    Google Scholar 

  • Mazzanti P, Bozzano F, Brunetti A, Esposito C, Martino S, Prestininzi A, Rocca A, Mugnozza Gabriele Scarascia (2015) Terrestrial SAR interferometry monitoring of natural slopes and man-made structures. In: Lollino G et al (eds) Engineering geology for society and territory, vol 5. Springer International Publishing, Switzerland, pp 189–194

    Google Scholar 

  • Paranunzio R, Laio F, Chiarle M, Nigrelli G, Guzzetti F (2016) Climate anomalies associated to the occurrence of rockfalls at high-elevation in the Italian Alps. Hazards Earth Syst. Sci, Nat. doi:10.5194/nhess-2016-100

    Google Scholar 

  • Pestal G, Hejl E, Braunstingl R, Schuster R (2009) Erläuterungen Geologische Karte von Salzburg 1:200.000. Land Salzburg & Geologische Bundesanstalt, 1–162

  • Romeo S, Kieffer DS, Di Matteo L (2014) The Ingelsberg landslide (Bad Hofgastein, Austria): description and first results of monitoring system (GBInSAR technique). Rend Online Soc Geol It 32:24–27

    Google Scholar 

  • Romeo S, Kieffer DS, Di Matteo L (2015) Reliability of GBInSAR Monitoring in Ingelsberg Landslide Area (Bad Hofgastein, Austria). In: Schweckendiek T et al. (Eds) Geotechnical Safety and Risk V. IOS press, pp 803–807

  • Sass O, Oberlechner M (2012) Is climate change causing increased rockfall frequency in Austria? Natl Hazards Earth Syst Sci 12:3209–3216

    Article  Google Scholar 

  • Schmid SM, Fügenschuh B, Eduard K (2004) Tectonic map and overall architecture of the Alpine orogene. Eclogae Geol Helv 97:93–117

    Article  Google Scholar 

  • Schweigl J, Hervás J (2009) Landslide Mapping in Austria. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Tilch N, Kociu A, Haberler A, Melzner S, Schwarz L, Lotter M (2011) The data management system GEORIOS of the geological survey of Austria, Poster presentation RocExs 2011. https://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_tilch_georios.pdf

  • Unterberger K (2013) The application of Ground-based InSAR to understand slope behavior at the Hornbergl in Reutte, Tyrol and the Ingelsberg in Bad Hofgastein, Salzburg, Austria. Unpublished Master’s Thesis, Institute of Applied Geosciences, Technical University of Graz

  • Wilhelmstötter F (2013) Geotechnisch-Geologische Untersuchung des Felssturzgebietes Ingelsberg/Bad Hofgastein. Unpublished Master’s Thesis, Institute of Soil Mechanics and Foundation Engineering, Technical University of Graz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Di Matteo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Matteo, L., Romeo, S. & Kieffer, D.S. Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria). Bull Eng Geol Environ 76, 413–420 (2017). https://doi.org/10.1007/s10064-016-0980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0980-5

Keywords

Navigation