Skip to main content
Log in

Nanostructured TiO2 for stone coating: assessing compatibility with basic stone’s properties and photocatalytic effectiveness

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Many building materials have been functionalized to achieve photocatalytic properties, namely self-cleaning and depolluting abilities, through the application of photocatalytic TiO2 nanoparticles to those materials. These nanoparticles are able to preserve building façades by blocking the deposition of airborne particulates in polluted urban environments, and they are able to purify the air, thus benefiting the environment. In this study, the application of nanostructured TiO2 as a photoactive coating on two types of natural stone was investigated. A TiO2 sol obtained by sol–gel synthesis followed by hydrothermal processing was applied via spray deposition onto a compact limestone and a highly porous calcarenite. The effects of this coating on some basic properties of the stone, such as its color and water absorption, and the photocatalytic effectiveness of the coated surface were then studied. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that the coating presented a uniform morphology on both types of stone, with the TiO2 nanoparticles penetrating <1 µm into the stone. The coating was found to be compatible with the properties of the investigated types of stone. Colorimetry indicated that the change in the color of the stone due to the coating was negligible. Measurements of the static contact angle and the results of the capillary water absorption test showed that photoinduced superhydrophilicity did not increase the amount of the water absorbed by the coated stone. A photodegradation test of rhodamine B demonstrated the self-cleaning ability of the coating on both types of stone. Conversely, the photocatalytic effectiveness of the coating—as measured by a nitrogen oxide abatement test—was found to be higher for the porous calcarenite than for the compact limestone, and to depend on the porosity and roughness of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrios AG, Pichat P (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. Rev App Electrochem 58:655–663. doi:10.1007/s10800-005-1627-6

    Article  Google Scholar 

  • Allen NS, Edge M, Verran J, Stratton J, Maltby J, Bygott C (2008) Photocatalytic titania based surfaces: environmental benefits. Polym Degrad Stabil 93:1632–1646. doi:10.1016/j.polymdegradstab.2008.04.015

    Article  Google Scholar 

  • Amoroso G, Fassina V (1983) Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Elsevier, Amsterdam

    Google Scholar 

  • Anania L, Badalà A, Barone G, Belfiore CM, Calabrò C, La Russa MF, Mazzoleni P, Pezzino A (2012) The stones in monumental masonry buildings of the “Val di Noto” area: new data on the relationships between petrographic characters and physical–mechanical properties. Constr Build Mater 33:122–132. doi:10.1016/j.conbuildmat.2011.12.076

  • Ballari MM, Yu QL, Brouwers HJH (2011) Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal Today 161:175–180. doi:10.1016/j.cattod.2010.09.028

    Article  Google Scholar 

  • Bergamonti L, Alfieri I, Lorenzi A, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Nanocrystalline TiO2 by sol–gel: characterisation and photocatalytic activity on Modica and Comiso stones. Appl Surf Sci 282:165–173. doi:10.1016/j.apsusc.2013.05.095

    Article  Google Scholar 

  • Bergamonti L, Alfieri I, Franzò M, Lorenzi A, Montenero A, Predieri G, Calia A, Lazzarini L, Bersani D, Lottici PP (2014) Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environ Sci Pollut Res 21:13264–13277. doi:10.1007/s11356-013-2136-5

    Article  Google Scholar 

  • Bondioli F, Taurino R, Ferrari AM (2009) Functionalization of ceramic tile surface by sol-gel technique. J Colloid Interface Sci 334:195–201. doi:10.1016/j.jcis.2009.02.054

    Article  Google Scholar 

  • Brimblecombe P, Grossi CM (2005) Aesthetic thresholds and blackening of stone buildings. Sci Total Environ 349:175–189. doi:10.1016/j.scitotenv.2005.01.009

    Article  Google Scholar 

  • Calia A, Laurenzi Tabasso M, Mecchi AM, Quarta G (2013) The study of stone for conservation purposes: Lecce stone (southern Italy). In: Cassar J, Winter MG, Marker BR, Walton NRG, Entwisle DC, Bromhead EN, Smith JWN (eds) Stone in historic buildings: characterization and performance. Special publication no. 391. Geological Society, London, pp 139–156. doi:10.1144/SP391.8

  • Cassar J (2010) The use of limestone in a historic context—the experience of Malta. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment, present-day challenges for the preservation of the past. Special publication no. 331. Geological Society, London, pp 13–25

  • CEN (2009) EN 15801: Conservation of cultural property—test methods—determination of water absorption by capillarity. CEN (European Committee for Standardization), Brussels

  • CEN (2010) EN 15802: Conservation of cultural property—test methods—determination of static contact angle. CEN (European Committee for Standardization), Brussels

  • CEN (2010) EN 15886: Conservation of cultural property—test methods—colour measurement of surfaces. CEN (European Committee for Standardization), Brussels

  • Chen J, Poon CS (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906. doi:10.1016/j.buildenv.2009.01.002

    Article  Google Scholar 

  • Colangiuli D, Calia A, Bianco N (2015) Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Constr Build Mater 93:189–196. doi:10.1016/j.conbuildmat.2015.05.100

    Article  Google Scholar 

  • Cozzoli P, Comparelli R, Fanizza E, Curri ML, Agostiano A (2003) Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Mater Sci Eng C 23:707–713. doi:10.1016/j.msec.2003.09.101

    Article  Google Scholar 

  • de Melo JVS, Trichês G (2012) Evaluation of the influence of environmental conditions on the efficiency of photocatalytic coatings in the degradation of nitrogen oxides (NOx). Build Environ 49:117–123. doi:10.1016/j.buildenv.2011.09.016

    Article  Google Scholar 

  • Demeestere K, Dewulf J, Van Langenhove H (2007) Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art. Crit Rev Environ Sci Technol 37:489–538. doi:10.1080/10643380600966467

    Article  Google Scholar 

  • Diamanti MV, Ormellese M, Pedeferri MP (2008) Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem Concr Res 38:1349–1353. doi:10.1016/j.cemconres.2008.07.003

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. In: Ham WE (ed) Classifications of carbonate rocks. AAPG memoirs no. 1. AAPG, Tulsa, pp 108–121

  • Fassina V (1978) A survey on air pollution and deterioration of stonework in Venice. Atmos Environ 12:2205–2211. doi:10.1016/0004-6981(78)90176-2

    Article  Google Scholar 

  • Folli A, Pade D, Bæk Hansen T, Tiziana De Marco T, Macphee DE (2012) TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry. Cem Concr Res 42:539–548. doi:10.1016/j.cemconres.2011.12.001

    Article  Google Scholar 

  • Fujishima A, Zhangb X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Special publication no. 271. Geological Society, London, pp 117–130. doi:10.1144/GSL.SP.2007.271.01.13

  • Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Color changes in architectural limestones from pollution and cleaning. Color Res Appl 32:320–331. doi:10.1002/col.20322

    Article  Google Scholar 

  • Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191:155–160. doi:10.1016/j.surfcoat.2004.02.022

    Article  Google Scholar 

  • Kapridaki C, Maravelaki-Kalaitzaki P (2013) TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat 76:400–410. doi:10.1016/j.porgcoat.2012.10.006

    Article  Google Scholar 

  • Kapridaki C, Pinho L, Mosquera MJ, Maravelaki-Kalaitzaki P (2014) Producing photoactive, transparent and hydrophobic SiO2–crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl Catal B Environ 156–157:416–427. doi:10.1016/j.apcatb.2014.03.042

    Article  Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A 106:51–56. doi:10.1016/S1010-6030(97)00038-5

    Article  Google Scholar 

  • Krishnan P, Zhang MH, Yu L, Feng H (2013) Photocatalytic degradation of particulate pollutants and self-cleaning performance of TiO2-containing silicate coating and mortar. Constr Build Mater 44:309–316. doi:10.1016/j.conbuildmat.2013.03.009

    Article  Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191. doi:10.1016/j.porgcoat.2011.12.008

    Article  Google Scholar 

  • Li Y, Sun S, Ma M, Ouyang Y, Yan W (2008) Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem Eng J 142:147–155. doi:10.1016/j.cej.2008.01.009

    Article  Google Scholar 

  • Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) Photocatalytic TiO2 coatings on limestone. J Sol Gel Sci Technol 60:437–444. doi:10.1007/s10971-011-2574-9

    Article  Google Scholar 

  • Luvidi L, Laguzzi G, Gallese F, Mecchi AM, Sidoti G (2010) Application of TiO2 based coatings on stone surfaces of interest in the field of cultural heritage. In: Ferrari A (ed) Proceedings of 4th International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, vol II. Grafica Elettronica, Napoli, pp 495–500

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35. doi:10.1016/S1010-6030(97)00118-4

    Article  Google Scholar 

  • Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A Gen 244:383–391. doi:10.1016/S0926-860X(02)00610-5

    Article  Google Scholar 

  • Pal S, Laera AM, Licciulli A, Catalano M, Taurino A (2014) Biphase TiO2 microspheres with enhanced photocatalytic activity. Ind Eng Chem Res 53:7931–7938. doi:10.1021/ie404123f

    Article  Google Scholar 

  • Paz Y, Luo Z, Rabenberg L, Haller A (1995) Photooxidative self-cleaning transparent titanium dioxide films on glass. J Mater Res 10:2842–2848. doi:10.1557/JMR.1995.2842

    Article  Google Scholar 

  • Pinho L, Mosquera MJ (2011) Titania–silica nanocomposite photocatalyst with application in stone self-cleaning. J Phys Chem C 115:22851–22862. doi:10.1021/jp2074623

  • Pinho L, Mosquera MJ (2013) Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ 134–135:205–221. doi:10.1016/j.apcatb.2013.01.021

    Article  Google Scholar 

  • Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2013) A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci 275:389–396. doi:10.1016/j.apsusc.2012.10.142

    Article  Google Scholar 

  • Pinho L, Rojas M, Mosquera MJ (2015) Ag–SiO2–TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Appl Catal B Environ 178:44–154. doi:10.1016/j.apcatb.2014.10.002

    Article  Google Scholar 

  • Poon CS, Cheung E (2007) NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Mater 21:1746–1753. doi:10.1016/j.conbuildmat.2006.05.018

    Article  Google Scholar 

  • Potenza G, Licciulli A, Diso D, Franza S, Calia A, Lettieri M (2007) Ciccarella G (2007) Surface engineering on natural stone through TiO2 photocatalytic coatings. In: Baglioni P, Cassar L (eds) Proceedings of International RILEM Symposium on Photocatalysis, Environment and Construction Materials—TDP 2007. Rilem, Bagneux, pp 315–322

  • Price CA, Doehne E (2011) Stone conservation: an overview of current research. The Getty Conservation Institute, Los Angeles

  • Puzenat E, Pichat P (2003) Studying TiO2 coatings on silica-covered glass by O2 photosorption measurements and FTIR–ATR spectrometry: correlation with the self-cleaning efficacy. J Photochem Photobiol A 160:127–133. doi:10.1016/S1010-6030(03)00231-4

    Article  Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006

    Article  Google Scholar 

  • Ramirez AM, Demeestere K, De Belie N, Mantyla T, Levanen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838. doi:10.1016/j.buildenv.2009.09.003

    Article  Google Scholar 

  • Ruot B, Plassais A, Olive F, Guillot L, Bonafous L (2009) TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol Energy 83:1794–1801. doi:10.1016/j.solener.2009.05.017

    Article  Google Scholar 

  • Smith BJ, Gomez-Heras M, Viles HA, Cassar J (2010) Limestone in the built environment: present-day challenges for the preservation of the past. Special publication no. 331. Geological Society, London

  • Su R, Bechstein R, Sø L, Vang RT, Sillassen M, Esbjörnsson B, Palmqvist A, Besenbacher F (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J Phys Chem C 115:24287–24292. doi:10.1021/jp2086768

    Article  Google Scholar 

  • Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol A 156:227–233. doi:10.1016/S1010-6030(02)00434-3

    Article  Google Scholar 

  • Toma FL, Bertrand G, Klein D, Coddet C (2004) Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ Chem Lett 2:117–121. doi:10.1007/s10311-004-0087-2

    Article  Google Scholar 

  • Török Á, Přikryl R (2010) Current methods and future trends in testing, durability analyses and provenance studies of natural stones used in historical monuments. Eng Geol 115:139–142. doi:10.1016/j.enggeo.2010.07.003

    Article  Google Scholar 

  • UNI Ente Nazionale Italiano di Unificazione (2001) UNI 10921: Cultural heritage—natural and artificial stones—water repellents—application on samples and determination of their properties in laboratory. UNI Ente Nazionale Italiano di Unificazione, Milan

  • Vicente JP, Gacoin T, Barboux P, Boilot JP, Rondet M, Gueneau L (2003) Photocatalytic decomposition of fatty stains by TiO2 thin films. Int J Photoenergy 5:95–98. doi:10.1155/S1110662X03000199

    Article  Google Scholar 

  • Wang CC, Ying JY (1999) Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11:3113–3120. doi:10.1021/cm990180f

  • Wilhelm P, Stephan D (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A 185:19–25. doi:10.1016/j.jphotochem.2006.05.003

    Article  Google Scholar 

  • Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11:1694–1703. doi:10.1039/B008974P

    Article  Google Scholar 

  • Young ME, Urquhart DCM, Laing RA (2003) Maintenance and repair issues for stone cleaned sandstone and granite building façades. Build Environ 38:1125–1131. doi:10.1016/S0360-1323(03)00084-2

    Article  Google Scholar 

  • Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487. doi:10.1021/jp000499j

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Puglia Funds (FSE-POR Puglia 2006–2013). Amy E. Marquardt and Raymond J. Phaneuf acknowledge support from the National Science Foundation (SCIART #DMR1041809). The authors would like to thank Dr. Maurizio Masieri (CNR-IBAM) for the ESEM morphological analyses and Dr. Piero Negro (Italcementi Laboratory, Brindisi) for performing NO x photodegradation tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Calia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lettieri, M., Calia, A., Licciulli, A. et al. Nanostructured TiO2 for stone coating: assessing compatibility with basic stone’s properties and photocatalytic effectiveness. Bull Eng Geol Environ 76, 101–114 (2017). https://doi.org/10.1007/s10064-015-0820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0820-z

Keywords

Navigation