Skip to main content
Log in

Application of the orthogonal design method in geotechnical parameter back analysis for underground structures

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The back analysis method has been widely used as an indirect method of determining geotechnical parameters based on field measurements. The number of parameters and their initial values greatly influence the reliability and efficiency of back analysis. Therefore, sensitivity analysis is often employed to select high sensitivity parameters that have more greater impact on measured back analysis values. The orthogonal design method was first utilized to select geotechnical parameters for back analysis. The optimized parameter values obtained from an orthogonal design table can be used as the initial back analysis values, so as to avoid optimisation algorithm searching in local parameter spaces. By introducing a penalty function to the objective function, back analysis of the geotechnical parameters is changed into an unconstrained optimisation problem, whereby the Nelder–Mead method can then be employed. To verify the feasibility of the proposed back analysis method, a case study was conducted to determine the rock mass parameters for the Houziyan underground powerhouse complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • ABAQUS (2004) Analysis User’s Manual, Version 6.5

  • Bieniawski ZT (1978) Determining rock masses deformability: experience form case histories. Int J Rock Mech Min Sci Geomech Abstr 15(5):237–247

    Article  Google Scholar 

  • Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):410–424

    Article  Google Scholar 

  • Eclaircy-Caudron S, Dias D, R. Kastner (2007) Inverse analysis on measurements realized during a tunnel excavation. In: Proc. ITA-AITES World Tunnel Congress, Prague

  • Feng XT, Zhao H, Li S (2004) A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology. Int J Numer Anal Meth Geomech 28(11):1141–1165

    Article  Google Scholar 

  • Gioda G, Locatelli L (1999) Back analysis of the measurements performed during the excavation of a shallow tunnel in sand. Numer Anal Method Geomech 23:1407–1425

    Article  Google Scholar 

  • Ji L, Si Y, Liu H, Song X, Zhu W, Zhu A (2014) Application of orthogonal experimental design in synthesis of mesoporous bioactive glass. Micropor Mesopor Material 184:122–126

    Article  Google Scholar 

  • Levasseur S, Malecot Y, Boulon M, Flavigny E (2007) Soil parameter identification using a genetic algorithm. Int J Numer Anal Meth Geomech 32(2):189–213

    Article  Google Scholar 

  • Luersen MA, Le Riche R, Guyon F (2004) A constrained, globalized, and bounded Nelder-Mead method for engineering optimization. Struct Multidiscip Optim 27:43–54

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Siam J Appl Math 11:431–441

    Article  Google Scholar 

  • Min KB, Jing L (2003) Numerical determination of equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int J Rock Mech Min Sci 40:795–816

    Article  Google Scholar 

  • Ministry of Housing and Urban-rural Development of China (1994) Standard for engineering classification of rock masses. China Water Power Press, Beijing

    Google Scholar 

  • Miranda T, Dias D, Eclaircy-Caudron S, Gomes-Correia A, Costa L (2011) Back analysis of geotechnical parameters by optimization of 3D model of an underground structure. Tunn Undergr Space Technol 26(6):659–673

    Article  Google Scholar 

  • Montgomery DC (1991) Design and Analysis of Experiments, 3rd edn. Wiley, New York

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Oreste P (2005) Back-analysis techniques for the improvement of the understanding of rock in underground constructions. Tunn Undergr Space Technol 20:7–21

    Article  Google Scholar 

  • Phadke MS (1995) Quality engineering using robust design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Sakurai S, Akutagawa S, Takeuchi K, Shinji M, Shimizu N (2003) Back analysis for tunnel engineering as a modern observational method. Tunn Undergr Space Technol 18:185–196

    Article  Google Scholar 

  • Swoboda G, Ichikawa Y, Dong Q, Zaki M (1999) Back analysis of large geotechnical models. Int J Numer Anal Meth Geomech 23(13):1455–1472

    Article  Google Scholar 

  • Tian HM, Chen WZ, Yang DS, Yang JP (2014) Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints. Rock Mech Rock Eng. doi:10.1007/s00603-014-0560-6

    Google Scholar 

  • Yang Z, Elgamal A (2003) Application of unconstrained optimization and sensitivity analysis to calibration of a soil constitutive model. Int J Numer Anal Meth Geomech 27(15):1277–1297

    Article  Google Scholar 

  • Yazdani M, Sharifzadeh M, Kamrani K, Ghorbani M (2012) Displacement-based numerical back analysis for estimation of rock mass parameters in Siah Bisheh powerhouse cavern using continuum and discontinuum approach. Tunn Undergr Space Technol 28:41–48

    Article  Google Scholar 

  • Yeniay Ö (2005) Penalty function methods for constrained optimization with genetic algorithms. Math Comput Appl 10(1):45–56

    Google Scholar 

  • Zhang LQ, Yue ZQ, Yang ZF, Qi JX, Liu FC (2006) A displacement-based back-analysis method for rock mass modulus and horizontal in situ stress in tunneling-illustrated with a case study. Tunn Undergr Space Technol 21:636–649

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Chinese Fundamental Research (973) Program through the Grant No. 2013CB036006 and the support of the National Natural Science Foundation of China (Grant Nos. 51309217, 51379200, 51225902 and 51274189). D. S. Yang acknowledges the support of the Chinese government plan for the Recruitment of Global Young Talents (1000 Young Talents Plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Chen, W., Yang, D. et al. Application of the orthogonal design method in geotechnical parameter back analysis for underground structures. Bull Eng Geol Environ 75, 239–249 (2016). https://doi.org/10.1007/s10064-015-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0730-0

Keywords

Navigation