Skip to main content
Log in

Probabilistic modeling of rockfall trajectories: a review

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Probabilistic approaches are widely adopted for the modeling of rockfall trajectories, but are not widely discussed in the literature. This paper aims to help fill this gap by reviewing probabilistic models of rockfall trajectories, while providing some perspectives for future study. We first make it clear that, from a theoretical point of view, the probabilistic approach is necessitated by both the ontic (inherent) uncertainty associated with rockfalls and the epistemic (information) uncertainty associated with numerical modeling. The review suggests that there may be the potential to improve the probabilistic modeling of rockfall trajectories in various aspects, including the systematic probabilistic modeling criterion, the random sampling approaches employed for probabilistic variables, the probabilistic modeling of rock shape, and the probabilistic prediction of rockfall intensity. However, there are still some open questions regarding the promotion of probabilistic modeling in practice. It is not clear whether probabilistically treating all of the variables of rockfall trajectory model with reasoned distributions will lead to significantly improved results, or whether the improvements will be great enough (given the difficulties and costs involved) that it is worth quantifying all of the uncertainties involved in rockfall trajectory modeling. The answers to these questions can be found in the practice of probabilistic modeling itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471. doi:10.1016/S1365-1609(03)00021-2

    Article  Google Scholar 

  • Agliardi F, Crosta GB (2014) Supporting rockfall countermeasure design in difficult conditions. In: Sassa K, Canuti P, Yin YP (ed) Landslide science for a safer geoenvironment, vol 3. Springer International Publishing AG, Cham, pp 71–76. doi:10.1007/978-3-319-04996-0_13

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059–1073. doi:10.5194/nhess-9-1059-2009

    Article  Google Scholar 

  • Andrew R, Hume H, Bartingale R, Rock A, Zhang R (2012) CRSP-3D user’s manual—Colorado Rockfall Simulation Program. http://www.cflhd.gov/programs/techDevelopment/geotech/CRSP-3D/. Accessed 17 July 2013

  • Ashfield JR (2001) The computer simulation and prediction of rock fall. PhD thesis. Durham University, Durham. http://etheses.dur.ac.uk/4383/. Accessed 17 July 2013

  • Azzoni A, Labarbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci 32:709–724. doi:10.1016/0148-9062(95)00018-c

  • Bartingale R, Higgins J, Andrew R, Rock A, Zhang R (2009) Colorado Rockfall Simulation Program version 5.0. In: Proc 60th Highway Geology Symp, Buffalo, NY, USA, 29 Sept–1 Oct 2009, pp 189–200

  • Bourrier F, Hungr O (2011) Rockfall dynamics: a critical review of collision and rebound models. In: Lambert S, Nicot F (ed) Rockfall engineering. ISTE Ltd./Wiley, London/Hoboken, pp 175–209. doi:10.1002/9781118601532.ch6

  • Bourrier F, Berger F, Tardif P, Dorren LKA, Hungr O (2012) Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches. Earth Surf Proc Land 37:656–665. doi:10.1002/esp.3202

    Article  Google Scholar 

  • Bourrier F, Lambert S, Baroth J (2015) A reliability-based approach for the design of rockfall protection fences. Rock Mech Rock Eng 48:247–259. doi:10.1007/s00603-013-0540-2

  • Bozzolo D, Pamini R (1986) Simulation of rock falls down a valley side. Acta Mech 63:113–130. doi:10.1007/bf01182543

    Article  Google Scholar 

  • Cottaz Y, Faure RM (2008) Pir3D, an easy to use three dimensional block fall simulator. In: Chen ZY, Zhang JM, Li ZK, Wu FQ, Ho K (ed) Landslides and engineered slopes—from the past to the future. Taylor & Francis, London, pp 319–322. doi:10.1201/9780203885284-c28

  • Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4:583–598. doi:10.5194/nhess-4-583-2004

    Article  Google Scholar 

  • Dorren LKA (2012) Rockyfor3D (v5.1) revealed—transparent description of the complete 3D rockfall model. http://www.ecorisq.org/

  • Dorren LKA, Berger F, Putters US (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Nat Hazards Earth Syst Sci 6:145–153. doi:10.5194/nhess-6-145-2006

    Article  Google Scholar 

  • Dorren LKA, Berger F, Jonnson M, Krautblatter M, Mölk M, Stoffel M, Wehrli A (2007) State of the art in rockfall–forest interactions. Schweiz Z Forstwes 158:128–141. doi:10.3188/szf.2007.0128

  • Dorren LKA, Domaas U, Kronholm K, Labiouse V (2011) Methods for predicting rockfall trajectories and run-out zones. In: Lambert S, Nicot F (ed) Rockfall engineering. ISTE Ltd./Wiley, London/Hoboken, pp 143–173. doi:10.1002/9781118601532.ch5

  • Dr. Spang GmbH (2008) Rockfall simulation program ROCKFALL 7.1 manual. http://www.dr-spang.de/en/rockfall_en/demoversion_en.html. Accessed 1 Oct 2013

  • Dudt J, Heidenreich B (2001) Treatment of the uncertainty in a three-dimensional numerical simulation model for rock falls. In: Int Conf on Landslides: Causes, Impacts, and Countermeasures, Davos, Switzerland, 17–21 June 2001, pp 507–514

  • Elmouttie MK, Poropat GV (2012) A method to estimate in situ block size distribution. Rock Mech Rock Eng 45:401–407. doi:10.1007/s00603-011-0175-0

    Article  Google Scholar 

  • Fernandez-Hernandez M, Paredes C, Castedo R, Llorente M, de la Vega-Panizo R (2012) Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain. Nat Hazards 64:1247–1271. doi:10.1007/s11069-012-0295-1

    Article  Google Scholar 

  • Fityus SG, Giacomini A, Buzzi O (2013) The significance of geology for the morphology of potentially unstable rocks. Eng Geol 162:43–52. doi:10.1016/j.enggeo.2013.05.007

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437. doi:10.1016/j.geomorph.2006.10.037

    Article  Google Scholar 

  • Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. In: Clague JJ, Stead D (ed) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 267–281. doi:10.1017/CBO9780511740367.023

  • Frattini P, Crosta GB, Valagussa A (2014) Rockfall runout modelling for hazard characterization and countermeasure design in urban area. In: Sassa K, Canuti P, Yin YP (eds) Landslide science for a safer geoenvironment, vol 3. Springer International Publishing AG, Cham, pp 385–391. doi:10.1007/978-3-319-04996-0_59

  • Giacomini A, Buzzi O, Renard B, Giani GP (2009) Experimental studies on fragmentation of rock falls on impact with rock surfaces. Int J Rock Mech Min Sci 46:708–715. doi:10.1016/j.ijrmms.2008.09.007

    Article  Google Scholar 

  • Glover J, Bartelt P, Christen M, Gerber W (2014) Rockfall-simulation with irregular rock blocks. In: Lollino G et al. (ed) Engineering geology for society and territory, vol 2. Springer International Publishing AG, Cham, pp 1729–1733. doi:10.1007/978-3-319-09057-3_306

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093. doi:10.1016/s0098-3004(02)00025-0

    Article  Google Scholar 

  • Haas F, Heckmann T, Wichmann V, Becht M (2012) Runout analysis of a large rockfall in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes. Earth Surf Proc Land 37:1444–1455. doi:10.1002/esp.3295

    Article  Google Scholar 

  • Holm K, Jakob M (2009) Long rockfall runout, Pascua Lama, Chile. Can Geotech J 46:225–230. doi:10.1139/T08-116

    Article  Google Scholar 

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazards. In: Bonnard C (ed) 5th International Symposium on Landslides, vol 1. AA Balkema, Lausanne, pp 685–690

  • Hürlimann M, Abancó C, Moya J (2012) Rockfalls detached from a lateral moraine during spring season. 2010 and 2011 events observed at the Rebaixader debris-flow monitoring site (Central Pyrenees, Spain). Landslides 9:385–393. doi:10.1007/s10346-011-0314-4

    Article  Google Scholar 

  • Jaboyedoff M, Labiouse V (2011) Technical note: Preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819–828. doi:10.5194/nhess-11-819-2011

  • Labiouse V, Heidenreich B (2009) Half-scale experimental study of rockfall impacts on sandy slopes. Nat Hazards Earth Syst Sci 9:1981–1993. doi:10.5194/nhess-9-1981-2009

    Article  Google Scholar 

  • Lambert C, Thoeni K, Giacomini A, Casagrande D, Sloan S (2012) Rockfall hazard analysis from discrete fracture network modelling with finite persistence discontinuities. Rock Mech Rock Eng 45:871–884. doi:10.1007/s00603-012-0250-1

    Google Scholar 

  • Lan HX, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279. doi:10.1016/j.cageo.2006.05.013

    Article  Google Scholar 

  • Lan HX, Martin CD, Zhou CH, Lim CH (2010) Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 118:213–223. doi:10.1016/j.geomorph.2010.01.002

    Article  Google Scholar 

  • Lan HX, Li LP, Wu YM (2013) The role of rockfall intensity on its risk assessment. In: Wu FQ, Qi SW (ed) Global view of engineering geology and the environment. Taylor & Francis, London, pp 51–58. doi:10.1201/b15794-10

  • Lan HX, Li LP, Wu YM (2014) Stochasticity of rockfall trajectory revealed by a field experiment repeated on a single sample. In: Lollino G et al. (eds) Engineering geology for society and territory, vol 2. Springer International Publishing, Cham, pp 1713–1721. doi:10.1007/978-3-319-09057-3_304

  • Leine RI, Schweizer A, Christen M, Glover J, Bartelt P, Gerber W (2014) Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst Dyn 32:241–271. doi:10.1007/s11044-013-9393-4

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2

    Article  Google Scholar 

  • Ma GC, Matsuyama H, Nishiyama S, Ohnishi Y (2013) Development of probabilistic rockfall simulation technique by the discontinuous deformation analysis (DDA). In: Zhao J, Li JC (eds) Rock dynamics and applications, state of the art. Taylor & Francis, London, pp 465–471. doi:10.1201/b14916-60

  • Macciotta R, Martin CD, Cruden DM (2014) Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides. doi:10.1007/s10346-014-0503-z

    Google Scholar 

  • Pantelidis L, Kokkalis A (2011) Designing passive rockfall measures based on computer simulation and field experience to enhance highway safety. Int J Rock Mech Min Sci 48:1369–1375. doi:10.1016/j.ijrmms.2011.09.008

    Article  Google Scholar 

  • Paronuzzi P (1989) Probabilistic approach for design optimization of rockfall protective barriers. Q J Eng Geol 22:175–183. doi:10.1144/gsl.qjeg.1989.022.03.02

    Article  Google Scholar 

  • Paronuzzi P (2009) Field evidence and kinematical back-analysis of block rebounds: the Lavone Rockfall, Northern Italy. Rock Mech Rock Eng 42:783–813. doi:10.1007/s00603-008-0021-1

  • Pfeiffer TJ (1989) Rockfall hazard analysis using computer simulation of rockfalls. Dissertation. Colorado School of Mines, Golden

  • Radtke A, Toe D, Berger F, Zerbe S, Bourrier F (2014) Managing coppice forests for rockfall protection: lessons from modeling. Ann For Sci 71:485–494. doi:10.1007/s13595-013-0339-z

    Article  Google Scholar 

  • Rammer W, Brauner M, Dorren LKA, Berger F, Lexer MJ (2010) Evaluation of a 3-D rockfall module within a forest patch model. Nat Hazards Earth Syst Sci 10:699–711. doi:10.5194/nhess-10-699-2010

    Article  Google Scholar 

  • RocPro3D (2014) RocPro3D software. http://www.rocpro3d.com/rocpro3d_en.php

  • Rocscience Inc. (2013) RocFall 5.0. https://www.rocscience.com/products/12/RocFall

  • Scioldo G (2006) User guide: ISOMAP & ROTOMAP—3D surface modelling and rockfall analysis. http://www.geoandsoft.com/english/download.htm

  • Spadari M, Giacomini A, Buzzi O, Fityus S, Giani GP (2012) In situ rockfall testing in New South Wales, Australia. Int J Rock Mech Min Sci 49:84–93. doi:10.1016/j.ijrmms.2011.11.013

    Article  Google Scholar 

  • Spadari M, Kardani M, De Carteret R, Giacomini A, Buzzi O, Fityus S, Sloan SW (2013) Statistical evaluation of rockfall energy ranges for different geological settings of New South Wales, Australia. Eng Geol 158:57–65. doi:10.1016/j.enggeo.2013.03.007

    Article  Google Scholar 

  • Stevens WD (1998) RocFall: a tool for probabilistic analysis, design of remedial measures and prediction of rockfalls. Dissertation. University of Toronto, Toronto

  • Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111. doi:10.1016/j.enggeo.2011.02.005

    Article  Google Scholar 

  • Turner AK, Duffy JD (2012) Modeling and prediction of rockfall. In: Turner AK, Schuster RL (eds) Rockfall: characterization and control. Transportation Research Board, National Research Council, Washington, DC, pp 334–406

  • Valagussa A, Frattini P, Crosta GB (2014) Earthquake-induced rockfall hazard zoning. Eng Geol 182:213–225. doi:10.1016/j.enggeo.2014.07.009

    Article  Google Scholar 

  • van Asselt MBA, Rotmans J (2002) Uncertainty in integrated assessment modelling—from positivism to pluralism. Clim Chang 54:75–105. doi:10.1023/a:1015783803445

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Nat Hazards Earth Syst Sci 11:2617–2651. doi:10.5194/nhess-11-2617-2011

    Article  Google Scholar 

  • Wang Y, Tonon F (2011) Discrete element modeling of rock fragmentation upon impact in rock fall analysis. Rock Mech Rock Eng 44:23–35. doi:10.1007/s00603-010-0110-9

    Article  Google Scholar 

  • Woltjer M, Rammer W, Brauner M, Seidl R, Mohren GMJ, Lexer MJ (2008) Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J Environ Manage 87:373–388. doi:10.1016/j.jenvman.2007.01.031

    Article  Google Scholar 

  • Wyllie DC (2014) Calibration of rock fall modeling parameters. Int J Rock Mech Min Sci 67:170–180. doi:10.1016/j.ijrmms.2013.10.002

    Google Scholar 

  • Zheng L, Chen GQ, Li YG, Zhang YB, Kasama K (2014) The slope modeling method with GIS support for rockfall analysis using 3D DDA. Geomech Geoeng Int J 9:142–152. doi:10.1080/17486025.2013.871070

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (nos. 41272354 and 41072241), the One Hundred Talents Program of the Chinese Academy of Sciences, and the Railway Ground Hazard Research Program (RGHRP) of Canada. We thank the authors of CRSP-3D for permitting free online access of the program, and Rocscience Inc., Dr. Spang GmbH, and RocPro3D for providing trial versions of their software packages. The comments of two anonymous reviewers were very helpful for improving the manuscript. We would also like to express our sincere appreciation to Ms. Louise Vick for improving the writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengxing Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lan, H. Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Environ 74, 1163–1176 (2015). https://doi.org/10.1007/s10064-015-0718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0718-9

Keywords

Navigation