Skip to main content
Log in

Accurate determination of the Taşkent (Konya, Turkey) landslide using a long-range terrestrial laser scanner

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslides are a common type of mass movement that occur in large numbers and have significant effects on topography. In Turkey, landslides rank second after earthquakes among natural disasters that cause widespread loss of life and property. This study investigates the monitoring of the Taşkent Landslide (Konya, Turkey), which has considerably affected the local topography. The landslide in Taşkent had an adverse effect on transportation to nearby towns and villages. Initial studies were conducted using the global navigation satellite system (GNSS) measurement scale; these studies are currently on-going. Since 2011, studies using terrestrial laser scanning (TLS), which is one of the latest ground-positioning technologies, have also been launched. This article presents the results of the TLS and GNSS approaches used to monitor, characterise and model an active landslide. It includes the comparison and analysis of a point cloud, three-dimensional model, profile and change in volume mass acquired in different time periods in one landslide area. The point cloud data, obtained from two different time periods using the TLS technique, and supported by the results of GNSS analysis, were analysed via different methods. The TLS revealed that up to 4 m of material was displaced at the site of the landslide, and it revealed detailed information about how the landslide occurred. The volume of the mass that moved as a result of the landslide was determined, and movements that occurred in the geological structure were monitored. These studies showed that the TLS point cloud method can be effectively used in the monitoring of landslides that occur in areas that are large, difficult to reach, rugged or mountainous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88(3–4):136–148. doi:10.1016/j.enggeo.2006.09.012

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Bitelli G, Dubbini M, Anutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Paper presented at the XXth ISPRS. Commission V, WG V/2, Istanbul, Turkey

  • Brideau M-A, Sturzenegger M, Stead D, Jaboyedoff M, Lawrence M, Roberts NJ, Ward BC, Millard TH, Clague JJ (2012) Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 9(1):75–91. doi:10.1007/s10346-011-0286-4

    Article  Google Scholar 

  • Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric. GPS and geophysical data. Eng Geol 88(3–4):149–159

    Article  Google Scholar 

  • Casula G, Mora P, Bianchi MG (2010) Detection of terrain morphologic features using GPS, TLS, and land surveys: “tana della volpe” blind valley case study. J Surv Eng ASCE 136(3):132–138. doi:10.1061/(asce)su.1943-5428.0000022

    Article  Google Scholar 

  • Cavalli M, Marchi L (2008) Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazard Earth Syst 8(2):323–333. doi:10.5194/nhess-8-323-2008

    Article  Google Scholar 

  • Chen Y, Medioni G (1991) Object modeling by registration of multiple range images. In: IEEE international conference on robot and automation, Sacramento

  • CloudCompare (2013) Telecom ParisTech (version 2.4) [GPL software]. EDF R&D

  • Corsini A, Borgatti L, Coren F, Vellico M (2007) Use of multitemporal airborne lidar surveys to analyse post-failure behaviour of earth slides. Can J Remote Sens 33(2):116–120. doi:10.5589/m07-015

    Article  Google Scholar 

  • Corsini A, Borgatti L, Cervi F, Dahne A, Ronchetti F, Sterzai P (2009) Estimating mass-wasting processes in active earth slides - earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Nat Hazard Earth Syst 9(2):433–439. doi:10.5194/nhess-9-433-2009

    Article  Google Scholar 

  • Daehne A, Corsini A (2013) Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Proc Land 38(6):640–654. doi:10.1002/esp.3351

    Article  Google Scholar 

  • Demir N, Bayram B, Alkış Z, Helvacı C, Çetin I, Vögtle T, Ringle K, Steinle E (2004) Laser scanning for terrestrial photogrammetry, alternative system or combined with traditional system. Paper presented at the proceeding of the XXth ISPRS commission V, WG V/2, Istanbul, Turkey, 12–23 July

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2012) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 1–12. doi:10.1007/s10346-012-0329-5

  • Gallay M, Lloyd CD, McKinley J, Barry L (2013) Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: a case study from the Lake District, England. Comput Geosci 51:216–227. doi:10.1016/j.cageo.2012.08.015

    Article  Google Scholar 

  • Geomagic (2012) Software (Version 2012). Suite 300 Morrisville, NC 27560, USA

  • Ghuffar S, Szekely B, Roncat A, Pfeifer N (2013) Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sens 5(6):2720–2745

    Article  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2012) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides. doi:10.1007/s10346-012-0374-0

    Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55(3):167–192

    Article  Google Scholar 

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm 59(3):151–174. doi:10.1016/j.isprsjprs.2005.02.006

    Article  Google Scholar 

  • Guarnieri A, Vettore A, Camarda M, Domenica C (2011) Automatic registration of large range datasets with spin-images. J Cult Herit 12(4):476–484

    Article  Google Scholar 

  • Guarnieri A, Milan N, Vettore A (2013) Monitoring of complex structure for structural control using terrestrial laser scanning (Tls) and photogrammetry. Int J Archit Herit 7(1):54–67

    Article  Google Scholar 

  • Heritage GL, Large ARG (2009) Laser scanning for the environmental sciences. Wiley-Blackwell. doi:10.1002/9781444311952

  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne landslide (Isère, France). Remote Sens 2(12):2785–2802. doi:10.3390/rs122785

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kraus K (2007) Photogrammetry: geometry from images and laser scans (trans: Ian A. Harley, Kyle S). Walter de Gruyter, Germany

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57(3–4):331–351. doi:10.1016/s0169-555x(03)00164-8

    Article  Google Scholar 

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm 63(1):142–154. doi:10.1016/j.isprsjprs.2007.07.008

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzger R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazard Earth Syst 9(3):1003–1019. doi:10.5194/nhess-9-1003-2009

    Article  Google Scholar 

  • Özgül N (1997) Bozkır-Hadim-Taşkent (Orta Toroslar’ın Kuzey Kesimi) Dolayında Yer Alan Tektono-Stratigrafik Birliklerin Stratigrafisi. MTA Dergisi 119:113–174 (in Turkish)

    Google Scholar 

  • Pesci A, Teza G, Casula G, Loddo F, De Martino P, Dolce M, Obrizzo F, Pingue F (2011) Multitemporal laser scanner-based observation of the Mt. Vesuvius crater: characterization of overall geometry and recognition of landslide events. ISPRS J Photogramm 66(3):327–336

    Article  Google Scholar 

  • Pirotti F, Grigolato S, Lingua E, Sitzia T, Tarolli P (2012) Laser scanner applications in forest and environmental sciences. Ital J Remote Sens 44(1):109–123. doi:10.5721/Itjrs20124419

    Article  Google Scholar 

  • Polyworks (2007) Beginner’s guide InnovMetric Software Inc. QC Canada

  • Ristic A, Abolmasov B, Govedarica M, Petrovacki D, Ristic A (2012) Shallow-landslide spatial structure interpretation using a multi-geophysical approach. Acta Geotech Slov 9(1):47–59

    Google Scholar 

  • Staiger R (2003) Terrestrial laser scanning technology, systems and applications. In: 2nd FIG regional conference, Morocco

  • Syahmi MZ, Wan Aziz WA, Zulkarnaini MA, Anuar A, Othman Z (2011) The movement detection on the landslide surface by using terrestrial laser scanning. In: IEEE control and system graduate research colloquium (ICSGRC), Shah Alam, 27–28 June 2011, pp 175–180

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28(16):3425–3446. doi:10.1080/01431160601024234

    Article  Google Scholar 

  • Teza G, Atzeni C, Balzani M, Galgaro A, Galvani G, Genevois R, Luzi G, Mecatti D, Noferini L, Pieraccini M, Silvano S, Uccelli F, Zaltron N (2008a) Ground-based monitoring of high-risk landslides through joint use of laser scanner and interferometric radar. Int J Remote Sens 29(16):4735–4756. doi:10.1080/01431160801942227

    Article  Google Scholar 

  • Teza G, Pesci A, Genevois R, Galgaro A (2008b) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97(3–4):424–437. doi:10.1016/j.geomorph.2007.09.003

    Article  Google Scholar 

  • Travelletti J, Malet JP, Samyn K, Grandjean G, Jaboyedoff M (2011) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides 10(1):37–54. doi:10.1007/s10346-011-0310-8

    Article  Google Scholar 

  • Travelletti J, Malet JP, Samyn K, Grandjean G, Jaboyedoff M (2013) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides 10(1):37–54

    Article  Google Scholar 

  • Tsakiri M, Lichti D, Pfeifer N (2006) Terrestrial laser scanning for deformation monitoring. In: 3rd IAG/12th FIG symposium, Baden, 22–24 May 2006

  • Turan A (2000) Korualan ve Bağbaşı (Hadim-Konya) Arasındaki Bölgenin Yapısal Özellikleri. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2(3):51–65 (in Turkish)

    Google Scholar 

  • Viero A, Furlanis S, Squarzoni C, Teza G, Galgaro A, Gianolla P (2012) Dynamics and mass balance of the 2007 Cima Una rockfall (Eastern Alps, Italy). Landslides. doi:10.1007/s10346-012-0338-4

  • Wang G, Philips D, Joyce J, Rivera F (2011) The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):191–203. doi:10.2478/v10156-010-0004-5

    Article  Google Scholar 

  • Yalçinkaya M, Bayrak T (2005) Comparison of static, kinematic and dynamic geodetic deformation models for Kutlugün landslide in northeastern Turkey. Nat Hazards 34(1):91–110. doi:10.1007/s11069-004-1967-2

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) (project number 111Y307) and by the Selcuk University Scientific Research Projects Coordinator (project number 11101028). The authors are also grateful to Assist. Prof. Dr. Uğur Avdan and Res. Assist. Resul Çömert, academic staff members at the University of Anadolu, Satellite and Space Science Research Institute, for their valuable help and for providing us with the Geomagic software. Additionally, the authors would like to offer their thanks to Assoc. Prof. Dr. Adnan Özdemir for his valuable comments on this paper in terms of the geologic structure of the Konya–Taşkent region. Thanks are also given to David Wilbanks for editing and improving the quality of English of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zeybek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeybek, M., Şanlıoğlu, İ. Accurate determination of the Taşkent (Konya, Turkey) landslide using a long-range terrestrial laser scanner. Bull Eng Geol Environ 74, 61–76 (2015). https://doi.org/10.1007/s10064-014-0592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-014-0592-x

Keywords

Navigation