Skip to main content
Log in

Numerical analysis of rock fall at Hanekleiv road tunnel

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The twin tube, 1,765 m long Hanekleiv road tunnel is located in Southeast Norway. Ten years after completion of the tunnel, a serious rock fall occurred in the southbound tube, approximately 1.1 km from the northern tunnel entrance, in a fault zone containing swelling clay. In addition to swelling, gravitational collapse due to the very low internal friction played an important role in the development of the instability. Numerical analysis has been carried out for the rock slide. Modelling based on the support actually applied indicated cracks during tunnel excavation as well as the tunnel collapse. Simulation showed that even reinforced shotcrete ribs or 25 cm thick concrete lining, based on the Q-system, may not be sufficient for the fault zone.

Résumé

Le tunnel routier bi-tube de Hanekleiv, de 1,765 m de longueur, est situé dans le sud-est de la Norvège. Dix ans après l’achèvement de la construction du tunnel, un important éboulement a eu lieu dans le tube sud, approximativement à 1,1 km de l’entrée nord du tunnel, au niveau d’une zone de faille où des argiles gonflantes étaient présentes. Associé au gonflement de ces argiles, de très faibles valeurs des angles de frottement interne des matériaux expliquent le développement de l’instabilité. Une analyse numérique a été réalisée pour ce qui concerne le glissement rocheux. Une modélisation portant sur le soutènement réellement appliqué a montré qu’une fissuration des terrains pendant la phase d’excavation ainsi qu’un éboulement étaient prévisibles. Une simulation numérique a montré que même des anneaux de béton projeté renforcés ou un revêtement de béton de 25 cm d’épaisseur, défini à partir du Q-système, pouvaient ne pas être suffisants au niveau de cette zone de faille.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bollingmo P, Nilsen B, Nordgulen Ø (2007) The cave-in at the Hanekleiv tunnel, 25 December 2006. Report from investigation panel established by the Norwegian Department of Transportation (in Norwegian), 14 February 2007

  • Brekke TL (1965) On the measurement of the relative potential swellability of hydrothermal montmorillonite clay from joints and faults in Precambrian and Paleozoic rocks in Norway. Int J Rock Mech Min Sci 2:155–165

    Article  Google Scholar 

  • Brekke TL, Selmer-Olsen R (1965) Stability problems in underground constructions caused by montmorillonite-carrying joints and faults. Eng Geol 1(1):3–19

    Article  Google Scholar 

  • Hanssen TH (1998) Rock stresses and tectonic activity. In: Proceedings of the Norwegian National Rock Mechanics Conference. Oslo, pp 29.1–29.24

  • Holmøy KH (2002) Significance of geological parameters for predicting water leakage in hard rock tunnels. PhD Thesis, NTNU, Trondheim, p 8

  • Itasca (2009) Fast lagrangian analysis of continua in 3 dimensions, version 4.0, user's manual. In: Itasca I (ed) Consulting Group, Minneapolis, Minnesota, USA

  • Mao D, Nilsen B, Lu M (2011) Analysis of loading effects on reinforced shotcrete ribs caused by weakness zone containing swelling clay. Tunn Undergr Space Technol 26:472–480

    Article  Google Scholar 

  • Nilsen B (2011) Cases of instability caused by weakness zones in Norwegian tunnels. Bull Eng Geol Environ 70:7–13

    Article  Google Scholar 

  • Nilsen B, Dahlø TS (1994) A study of cases of instability in hard rock tunnel. In: Proceedings of 7th IAEG Congress. Lisbon, vol. VI, Balkema, pp 4233–4242

  • Nilsen B, Palmstrøm A (2009) Engineering geological key factors for planning and constructing hard rock subsea tunnels. In :Proceedings of the 5th Symposium on Strait Crossings. Trondheim, pp 403–408

  • Norwegian Geotechnical Institute (NGI) (2011) http://www.ngi.no/en/Contentboxes-and-structures/Reference-Projects/Reference-projects/Q-method/

  • Norwegian Group for Rock Mechanics (NBG) (2000) Engineering geology and rock engineering, Hanbook NO. 2. Oslo, Norway, p 192

    Google Scholar 

  • Norwegian Public Roads Administration (2004) Manual of road tunnels, Handbook No. 021. Oslo, Norway, pp 31 - 38

  • Reynolds P (2007) Finding fault at Hanekleiv. Tunnels and Tunnelling International, pp 14–16

  • Selmer-Olsen R, Palmstrøm A (1989) Tunnel collapses in swelling clay zones. Tunn Tunn 21:49–51

    Google Scholar 

  • SINTEF Rock Engineering Group (2005) Test procedure for swelling pressure measurement (In Norwegian). Internal Report. NTNU, Norway

    Google Scholar 

  • Tyssekvam IO (1996) Sampling and characterization of swelling material in weakness zones (In Norwegian), Diploma Thesis. NTNU, Trondheim

    Google Scholar 

Download references

Acknowledgments

Professor Stephen Lippard is gratefully acknowledged for improving the language of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, D., Nilsen, B. & Lu, M. Numerical analysis of rock fall at Hanekleiv road tunnel. Bull Eng Geol Environ 71, 783–790 (2012). https://doi.org/10.1007/s10064-012-0438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0438-3

Keywords

Mots clés

Navigation