Skip to main content
Log in

Geotechnical aspects of the 2010 Darfield and 2011 Christchurch earthquakes, New Zealand, and geotechnical damage to structures and lifelines

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The Darfield earthquake (Mw 7.1; ML 7.2) occurred along a previously unknown strike-slip fault in Canterbury Province, New Zealand on 4 September 2010. The second (Christchurch) earthquake (Mw = 6.2) on 22 February 2011, caused by a thrust fault, affected the same region. Both earthquakes caused extensive liquefaction, associated ground deformation and severe damage to residential houses and utilities while instability occurred on the Port Hills. In this study, observations by the authors at different parts of the earthquake-affected region after both earthquakes are described, analyzed and discussed. The grain-size distribution of the liquefied soils shows a good agreement with empirical bounds of liquefiable soils. In addition, comparisons of the observations with the empirical relations linking the earthquake magnitude and liquefaction limit distance, show good agreement. The factors of safety against liquefaction are very low when computed by three different techniques using the data from available geotechnical boreholes. Good correlations are obtained between the displacements due to lateral spreading and those estimated from the aerial photogrammetry method, and between the observations with empirical magnitude and epicentral limit distance relations for coherent and disrupted slopes. Estimations using an empirical relation proposed by the authors are compared with lateral spreading and it is concluded that the thickness of liquefiable layers ranges between 4 and 8 m. As the houses and suburban buildings were light, the effect of liquefaction and lateral spreading caused severe damage but not collapse. However, heavy concrete structures settled and tilted and empty buried tanks floated. It is of note that these two earthquakes and major aftershocks greater than magnitude 5 showed that the same areas could liquefy multiple times if the conditions for liquefaction are satisfied.

Résumé

Le tremblement de terre de Darfield (Mw = 7,1; ML = 7,2), le 4 septembre 2010, s’est déclenché sur une faille de décrochement, inconnue jusqu’alors, dans la province de Canterbury en Nouvelle-Zélande. Le deuxième tremblement de terre de Christchurch (Mw = 6,2), le 22 février 2011, a été causé par une faille de chevauchement dans la même région. Les deux séismes ont été à l’origine d’importants phénomènes de liquéfaction, avec des déformations de terrains associées. L’habitat résidentiel et les équipements de services publics ont subi de graves dommages. Des instabilités de terrain se sont produites à Port Hills. Dans cette étude, les observations réalisées par les auteurs en différentes zones des régions affectées par ces deux séismes, sont décrites, analysées et discutées. La courbe granulométrique des sols liquéfiés montre un bon accord avec les règles empiriques relatives aux sols liquéfiables. De plus, les comparaisons des observations avec les relations empiriques reliant la magnitude d’un séisme et la distance limite des phénomènes de liquéfaction montrent un bon accord. Les coefficients de sécurité par rapport à la liquéfaction sont très faibles lorsqu’ils sont calculés à partir de trois techniques différentes utilisant des données issues de sondages géotechniques. De bonnes corrélations sont obtenues entre les observations de déplacements dus à des glissements par étalement latéral et les déplacements estimés à partir des méthodes de la photogrammétrie aérienne. De même, de bonnes corrélations sont obtenues entre les observations de localisation de glissements de terrain et les distances limites issues de relations empiriques reliant ces distances à la magnitude et la distance épicentrale. Des estimations relatives au phénomène de glissement par étalement latéral utilisant une relation empirique proposée par les auteurs sont réalisées et il apparaît que l’épaisseur des niveaux liquéfiables varie entre 4 et 8 m. Comme les maisons et les bâtiments à la périphérie des villes étaient légers, la liquéfaction et les glissements par étalement latéral ont causé des dommages importants mais pas d’effondrement du bâti. Cependant, des structures lourdes en béton se sont enfoncées dans le terrain et ont basculé et des réservoirs vides enterrés ont flotté sur les terrains liquéfiés. Il faut noter que ces deux séismes et les répliques de magnitude supérieure à 5 ont montré que les mêmes régions pouvaient se liquéfier à plusieurs reprises si les conditions de liquéfaction sont présentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Ambraseys NN (1988) Engineering seismology. Earthquake Eng Struct Dyn 17:1–105

    Article  Google Scholar 

  • Anderson H, Webb T (1994) New Zealand seismicity: patterns revealed by the upgraded National Seismograph Network. NZ J Geol Geophys 37(4):477–493

    Article  Google Scholar 

  • Aydan Ö (2001) Comparison of suitability of submerged tunnel and shield tunnel for subsea passage of Bosphorus. Jeoloji Mühendisliği 25(1):1–17 (in Turkish)

    Google Scholar 

  • Aydan Ö (2007) The inference of seismic and strong motion characteristics of earthquakes from faults with a particular emphasis on Turkish earthquakes. In: Proceedings of the 6th National Earthquake Engineering Conference of Turkey, İstanbul, pp 563–574

  • Aydan Ö (2009) Characteristics of ground liquefaction and lateral spreading caused by great Off-Sumatra earthquakes. In: Earthquake geotechnical engineering satellite conference, TC4 of ISSMGE (on CD)

  • Aydan Ö, Ohta Y (2011) A new proposal for strong ground motion estimations with the consideration of earthquake fault. In: 7th national conference on earthquake engineering, İstanbul, Turkey, paper no 65 (on CD)

  • Aydan Ö, Ulusay R (2010) A reconnaissance report on the Darfield (New Zealand) earthquake of September 4, 2010. JSCE Earthquake Disaster Investigation Committee, Tokyo

  • Aydan Ö, Ulusay R, Kumsar H, Sönmez H, Tuncay E (1998) A site investigation of June 27, 1998 Adana-Ceyhan earthquake. Turkish Earthquake Foundation, İstanbul, report no TDV/DR 006-03

  • Aydan Ö, Ulusay R, Atak VO (2008) Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines. Environ Geol 54:165–182

    Article  Google Scholar 

  • Aydan Ö, Ohta S, Hamada M (2009) Geotechnical evaluation of slope and ground failures during the 8 October 2005 Muzaffarabad earthquake, Pakistan. J Seismol 13(3):399–413

    Article  Google Scholar 

  • Beavan J, Haines J (2010) Contemporary horizontal velocity and strain-rate fields of the Pacific-Australian plate boundary through New Zealand. J Geophys Res 106(B1):741–770

    Article  Google Scholar 

  • Berril JB, Mulqueen PC, Ooi ETC (1994) Liquefaction at Kaiapoi in the 1901 Cheviot, New Zealand, earthquake. Bull N Z Natl Soc Earthq Eng 27(3):178–189

    Google Scholar 

  • Brown LJ, Weeber JH (1992) Geology of the Christchurch Urban Area. Institute of Geological and Nuclear Sciences, New Zealand

    Google Scholar 

  • Brown LJ, Beetham RD, Paterson BR, Weeber JH (1995) Geology of Christchurch, New Zealand. Environ Eng Geosci 1(4):427–488

    Google Scholar 

  • Christensen SA (2001) Regional liquefaction study for Waimakariri district. In: Proceedings of NZSEE 2001 conference, New Zealand, paper no 3.03.01

  • Cubrinovski M (2010) Personal communication on the Swedish weight sounding exploration results in areas liquefied during the 2010 Darfield earthquake. Civil Engineering Department of Canterbury University

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic time scale on estimates of current plate motion. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Dibble RR, Ansell JH, Berril JB (1980) Report on a study of seismic risk for BP (NZ) Ltd sites at Woolston and Heathcote. Unpublished report to BP (NZ) Ltd

  • ECan (2004) Environment Canterbury. http://ecan.govt.nz/publications/General/solid-facts-christchurch-liquefaction.pdf

  • ERI-TU (2010) Darfield Earthquake South Island, NZ, 2010. http://outreach.eri.u-tokyo.ac.jp/

  • Forsyth P, Barrel D, Jongens R (2008) Geology of the Christchurch Area. GNS QMap 1:2500000 Geological Map 16

  • Fukushima Y, Tanaka T, Kataoka S (1988) A new attenuation relationship for peak ground acceleration derived from strong motion accelerograms. In: 9th world congress of earthquake engineering, Tokyo, vol 2, pp 343–348

  • Furlong KP, Kamp JJ (2009) The lithospheric geodynamics of plate boundary transpression in New Zealand: initiating and emplacing subduction along the Hikurangi margin, and the tectonic evolution of the Alpine Fault system. Tectonophysics 474:449–462

    Article  Google Scholar 

  • GNS (2010) 2010 Darfield (Canterbury) earthquake. http://www.gns.cri.nz/

  • GNS (2011) GNS Science immediate report: report on landslide reconnaissance flight on 24 February 2011. http://www.geonet.org.nz/content/download/8894/58122/file/

  • Google Inc. (2010) http://www.google.com/earth/index.html

  • Hamada M, Yasuda S, Isoyama R, Emoto K (1986) Study on liquefaction induced permanent ground displacements. Association for the Development of Earthquake Prediction in Japan, vol 1

  • HARVARD (2010) Source process. http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/

  • Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong motion records from the 1979 Imperial Valley California Earthquake. Bull Seism Soc Am 71(6):2011–2038

    Google Scholar 

  • JSA (Japanese Standards Association) (1975) Japanese industrial standards: method of Swedish weight sounding—JIS A 1221 (1975), 1995 revision

  • Kaiser A, Holden C, Beavan C, Beetham D, Benites R, Celentano A, Collet D, Cousins J, Cubrinovski M, Dellow G, Denys P, Fielding E, Fry B, Gerstenberger M, Langridge R, Massey C, Motagh M, Pondard N, McVerry G, Ristau J, Stirling M, Thomas J, Uma SR, Zhao J (2011) The Mw 6.2 Christchurch Earthquake of February 2011: preliminary report. N Z J Geol Geophys Manuscript ID: NZJG-2011-0025.R2 (http://mc.manuscriptcentral.com/nzjg)

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  • Port and Harbour Research Institute, Japan (1997) Handbook on liquefaction remediation of reclaimed land. Balkema, The Netherlands

    Google Scholar 

  • Tokimatsu K, Yoshimi Y (1983) Empirical correlation of soil liquefaction based on SPT N-value and fines content. J Soil Found 23(4):56–74

    Article  Google Scholar 

  • Ulusay R, Aydan Ö (2011) Geotechnical damage in the 2010 Darfield (New Zealand) earthquake with an emphasis on ground liquefaction and lateral spreading induced damage. In: Proceedings of international conference on environmental geosciences and engineering survey for territory protection and population safety: EngeoPro 2011, Moscow (on CD)

  • Ulusay R, Tuncay E, Sonmez E, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291

    Article  Google Scholar 

  • USGS (2010) http://earthquake.usgs.gov/

  • Wikipedia (2010) http://simple.wikipedia.org/wiki/File:NZ_faults.png

  • Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluations of liquefaction resistance of soils. J Geotech Geoenviron Eng ASCE 127(10):817–833

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their heartfelt thanks to M. Beetham of the Civil Engineering Department of Canterbury University for his great help and guidance during the reconnaissance visits to the earthquake affected areas, to Prof. Dr. M. Cubrinovski also of the Civil Engineering Department of Canterbury University for information on liquefaction sites and ground exploration data using the Swedish Weight Sounding Method, and to Mr. T. Farrier of NZ Aerial Mapping Ltd. for providing the pre- and post-earthquake aerial photographs used for this study and to Mr. I. Yasuda from Hasshu Co. (Japan) for processing the aerial photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Ulusay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydan, Ö., Ulusay, R., Hamada, M. et al. Geotechnical aspects of the 2010 Darfield and 2011 Christchurch earthquakes, New Zealand, and geotechnical damage to structures and lifelines. Bull Eng Geol Environ 71, 637–662 (2012). https://doi.org/10.1007/s10064-012-0435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0435-6

Keywords

Mots clés

Navigation