Skip to main content
Log in

Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation

  • Published:
Molecules and Cells

Abstract

Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to costeffective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Banat, B.M., Hoshida, H., Ano, A., Nonklang, S., and Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microbiol. Biotechnol. 85, 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, H., Greco, G., and Luban, J. (2002). Cyclophilin A peptidylprolyl isomerase activity promotes ZPR1 nuclear export. Mol. Cell. Biol. 22, 6993–7003.

    Article  PubMed  CAS  Google Scholar 

  • Belloch, C., Orlic, S., Barrio, E., and Querol, A. (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int. J. Food Microbiol. 122, 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Cebollero, E., Gonzalez-Ramos, D., Tabera, L., and Gonzalez, R. (2007). Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol. Lett. 29, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Chu, F., Maynard, J.C., Chiosis, G., Nicchitta, C.V., and Burlingame, A.L. (2006). Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94. Protein Sci. 15, 1260–1269.

    Article  PubMed  CAS  Google Scholar 

  • Compagno, C., Brambilla, L., Capitanio, D., Boschi, F., Ranzi, B.M., and Porro, D. (2001). Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant. Yeast 18, 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D., and Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 85, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Eastmond, D.L., and Nelson, H.C. (2006). Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281, 32909–32921.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, P.N., Mannarino, S.C., Silva, C.G., Pereira, M.D., Panek, A.D., and Eleutherio, E.C. (2007). Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox Rep. 12, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.

    PubMed  CAS  Google Scholar 

  • Gibson, B.R., Lawrence, S.J., Leclaire, J.P., Powell, C.D., and Smart, K.A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31, 535–569.

    Article  PubMed  CAS  Google Scholar 

  • Gong, Y., Kakihara, Y., Krogan, N., Greenblatt, J., Emili, A., Zhang, Z., and Houry, W.A. (2009). An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5, 275.

    Article  PubMed  Google Scholar 

  • Hahn, J.S., Hu, Z., Thiele, D.J., and Iyer, V.R. (2004). Genomewide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249–5256.

    Article  PubMed  CAS  Google Scholar 

  • Han, D., Antunes, F., Canali, R., Rettori, D., and Cadenas, E. (2003). Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278, 5557–5563.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F.U., and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck, M., Miess, A., Stromer, T., Walter, S., and Buchner, J. (2005). Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861–23868.

    Article  PubMed  CAS  Google Scholar 

  • Herrero, E., Ros, J., Belli, G., and Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta 1780, 1217–1235.

    Article  PubMed  CAS  Google Scholar 

  • Jung, Y.J., and Park, H.D. (2005). Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol. Lett. 27, 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I.S., Jin, I., and Yoon, H.S. (2011). Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione. Cell Stress Chaperones 16, 1–14.

    Article  PubMed  Google Scholar 

  • Kim, I.S., Kim, Y.S., and Yoon, H.S. (2012). Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae. Mol. Cells 33, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Yun H.S., and Kwon, C. (2012). Molecular communications between plant heat shock responses and disease resistance. Mol. Cells 34, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Ma, M., and Liu, Z.L. (2010a). Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87, 829–845.

    Article  PubMed  CAS  Google Scholar 

  • Ma, M., and Liu, L.Z. (2010b). Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol. 10, 169.

    Article  PubMed  Google Scholar 

  • Mayr, C., Richter, K., Lilie, H., and Buchner, J. (2000). Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J. Biol. Chem. 275, 34140–34146.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, A.K., Gangwani, L., Davis, R.J., and Lambright, D.G. (2007). Structural insights into the interaction of the evolutionarily conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes. Proc. Natl. Acad. Sci. USA 104, 13930–13935.

    Article  PubMed  CAS  Google Scholar 

  • Nonklang, S., Abdel-Banat, B.M., Cha-aim, K., Moonjai, N., Hoshida, H., Limtong, S., Yamada, M., and Akada, R. (2008). Hightemperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 74, 7514–7521.

    Article  PubMed  CAS  Google Scholar 

  • Orozco, H., Matallana, E., and Aranda, A. (2012). Oxidative stress tolerance, adenylate cyclase, and autophagy are key players in the chronological life span of Saccharomyces cerevisiae during winemaking. Appl. Environ. Microbiol. 78, 2748–2757.

    Article  PubMed  CAS  Google Scholar 

  • Pizarro, F.J., Jewett, M.C., Nielsen, J., and Agosin, E. (2008). Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74, 6358–6368.

    Article  PubMed  CAS  Google Scholar 

  • Puria, R., Mannan, M.A., Chopra-Dewasthaly, R., and Ganesan, K. (2009). Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation. FEMS Yeast Res. 9, 1161–1171.

    Article  PubMed  CAS  Google Scholar 

  • Salvado, Z., Arroyo-Lopez, F.N., Guillamon, J.M., Salazar, G., Querol, A., and Barrio, E. (2011). Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol. 77, 2292–2302.

    Article  PubMed  CAS  Google Scholar 

  • Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J., and Takagi, H. (2012). Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker’s yeast in frozen dough. Biosci. Biotechnol. Biochem. 76, 624–627.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, D., Bandara, A., Fraser, S., Chambers, P.J., and Stanley, G.A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109, 13–24.

    PubMed  CAS  Google Scholar 

  • Tan, S.X., Teo, M., Lam, Y.T., Dawes, I.W., and Perrone, G.G. (2009). Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 1493–1508.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C.L., and Fields, S. (2004). Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genomics 5, 216–224.

    Article  PubMed  CAS  Google Scholar 

  • van Voorst, F., Houghton-Larsen, J., Jonson, L., Kielland-Brandt, M.C., and Brandt, A. (2006). Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23, 351–359.

    Article  PubMed  Google Scholar 

  • Wegele, H., Haslbeck, M., Reinstein, J., and Buchner, J. (2003). Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278, 25970–25976

    Article  PubMed  CAS  Google Scholar 

  • Wiegel, J. (1980). Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation process. Experientia 36, 1434–1446.

    CAS  Google Scholar 

  • Zhao, X.Q., and Bai, F.W. (2009). Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J. Biotechnol. 144, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., et al. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Sung Yoon.

About this article

Cite this article

Kim, IS., Kim, YS., Kim, H. et al. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol Cells 35, 210–218 (2013). https://doi.org/10.1007/s10059-013-2258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2258-0

Keywords

Navigation