Skip to main content
Log in

Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells

  • Research Article
  • Published:
Molecules and Cells

Abstract

Human adipose-derived mesenchymal stem cells (hADMSCs) are a potential cell source for autologous cell therapy due to their regenerative ability. However, detailed cytological or phenotypic characteristics of these cells are still unclear. Therefore, we determined and compared cell size, morphology, ultrastructure, and immunohistochemical (IHC) expression profiles of isolated hADMSCs and cells located in human adipose tissues. We also characterized the localization of these cells in vivo. Light microscopy examination at low power revealed that hADMSCs acquired a spindle-shaped morphology after four passages. Additionally, high power views showed that these cells had various sizes, nuclear contours, and cytoplasmic textures. To further evaluate cell morphology, transmission electron microscopy was performed. hADMSCs typically had ultrastructural characteristics similar to those of primitive mesenchymal cells including a relatively high nuclear/cytosol ratio, prominent nucleoli, immature cytoplasmic organelles, and numerous filipodia. Some cells contained various numbers of lamellar bodies and lipid droplets. IHC staining demonstrated that PDGFR and CD10 were constitutively expressed in most hADMSCs regardless of passage number but expression levels of α-SMA, CD68, Oct4 and c-kit varied. IHC staining of adipose tissue showed that cells with immunophenotypic characteristics identical to those of hADMSCs were located mainly in the perivascular adventitia not in smooth muscle area. In summary, hADMSCs were found to represent a heterogeneous cell population with primitive mesenchymal cells that were mainly found in the perivascular adventitia. Furthermore, the cell surface markers would be CD10/PDGFR. To obtain defined cell populations for therapeutic purposes, further studies will be required to establish more specific isolation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allt, G., and Lawrenson, J.G. (2001). Pericytes: cell biology and pathology. Cells Tissues Organs 169, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ. Res. 97, 512–23.

    Article  PubMed  CAS  Google Scholar 

  • Ball, S.G., Shuttleworth, C.A., and Kielty, C.M. (2010). Plateletderived growth factor receptors regulate mesenchymal stem cell fate: implications for neovascularization. Exp. Opin. Biol. Ther. 10, 57–71.

    Article  CAS  Google Scholar 

  • Caplan, A.I. (2008). All MSCs are pericytes? Cell Stem Cell 11, 229–230.

    Article  Google Scholar 

  • Cho, T.-J., Kim, J., Kwon, S.-K., Oh, K., Lee, J.-A., Lee, D.-S., Cho, J., and Park, S. (2012). A potent small-molecule inducer of chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. Chem. Sci. 3, 3071–3071.

    Article  CAS  Google Scholar 

  • Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Deslex, S., Negrel, R., Vannier, C., Etienne, J., and Ailhaud, G. (1987). Differentiation of human adipocyte precursors in a chemically defined serum-free medium. Int. J. Obes. 11, 19–27.

    PubMed  CAS  Google Scholar 

  • Dore-Duffy, P., and Cleary, K. (2011). Morphology and properties of pericytes. Methods Mol. Biol. 686, 49–68.

    Article  PubMed  CAS  Google Scholar 

  • Gimble, J.M., Katz, A.J., and Bunnell, B.A. (2007). Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  • Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W., and Gimble, J.M. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol. 189, 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Hauner, H., Schmid, P., and Pfeiffer, E.F. (1987). Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J. Clin. Endocrinol. Metab. 64, 832–835.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D., Hohn, H.P., Kleff, V., Tilki, D., and Ergün, S. (2010). Vascular wall-resident stem cells. Histol. Histopathol. 25, 681–689.

    PubMed  Google Scholar 

  • Krenacs, T., Zsakovics, I., Diczhazi, C., Ficsor, L., Varga, V.S., and Molnar, B. (2009). The potential of digital microscopy in breast pathology. Pathol. Oncol. Res. 15, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Musina, R.A., Bekchanova, E.S., and Sukhikh, G.T. (2005). Comparison of mesenchymal stem cells obtained from different human tissues. Bull. Exp. Biol. Med. 139, 504–509.

    Article  PubMed  CAS  Google Scholar 

  • Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y.L., Lue, T.F., and Lin, C.S. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 17, 1053–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.S., Xin, Z.C., Deng, C.H., Ning, H., Lin, G., and Lue, T.F. (2010). Defining adipose tissue-derived stem cells in tissue and in culture. Histol. Histopathol. 25, 807–815.

    PubMed  Google Scholar 

  • Locke, M., Feisst, V., and Dunbar, P.R. (2011). Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells 29, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Majesky, M.W., Dong, X.R., Hoglund, V., Mahoney, W.M. Jr., and Daum, G. (2011a). The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler. Thromb. Vasc. Biol. 31, 1530–1539.

    Article  PubMed  CAS  Google Scholar 

  • Majesky, M.W., Dong, X.R., Regan, J.N., and Hoglund, V.J. (2011b). Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ. Res. 108, 365–377.

    Article  PubMed  CAS  Google Scholar 

  • Mariotti, E., Mirabelli, P., Abate, G., Schiattarella, M., Martinelli, P., Fortunato, G., Di Noto, R., and Del Vecchio, L. (2008). Comparative characteristics of mesenchymal stem cells from human bone marrow and placenta: CD10, CD49d, and CD56 make a difference. Stem Cells Dev. 17, 1039–1041.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J.B., Floyd, Z.E., Hammill, L., Kloster, A., Di Halvorsen, Y., Ting, J.P., Storms, R. W., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24, 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Di Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24, 376–385.

    Article  PubMed  Google Scholar 

  • Musina, R.A., Bekchanova, E.S., and Sukhikh, G.T. (2005). Comparison of mesenchymal stem cells obtained from different human tissues. Bull. Exp. Biol. Med. 139, 504–509.

    Article  PubMed  CAS  Google Scholar 

  • Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T., and Kaneda, Y. (2006). Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13, 77–81.

    Article  PubMed  Google Scholar 

  • Ning, H., Lin, G., Lue, T.F., and Lin, C.S. (2006). Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation 74, 510–518.

    Article  PubMed  CAS  Google Scholar 

  • Pacilli, A., and Pasquinelli, G. (2009). Vascular wall resident progenitor cells: a review. Exp. Cell Res. 315, 901–914.

    Article  PubMed  CAS  Google Scholar 

  • Papanicolaou, G.N. (1942). A new procedure for staining vaginal smears. Science 95, 438–439.

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli, G., Tazzari, P., Ricci, F., Vaselli, C., Buzzi, M., Conte, R., Orrico, C., Foroni, L., Stella, A., Alviano, F., et al. (2007). Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastruct. Pathol. 31, 23–31.

    Article  PubMed  Google Scholar 

  • Pettersson, P., Cigolini, M., Sjöström, L., Smith, U., and Björntorp, P. (1984). Cells in human adipose tissue developing into adipocytes. Acta Med. Scand. 215, 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Psaltis, P.J., Zannettino, A.C., Worthley, S.G., and Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26, 2201–2210.

    Article  PubMed  Google Scholar 

  • Rodbell, M., Jones, A.B., Chiappe de Cingolani, G.E., and Birnbaumer, L. (1968). The actions of insulin and catabolic hormones on the plasma membrane of the fat cells. Recent Prog. Horm. Res. 24, 215–254.

    PubMed  CAS  Google Scholar 

  • Schäffler, A., and Büchler, C. (2007). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818–827.

    Article  PubMed  Google Scholar 

  • Sims, D.E. (1986). The pericyte-a review. Tissue Cell 18, 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Tholpady, S.S., Llull, R., Ogle, R.C., Rubin, J.P., Futrell, J.W., and Katz, A.J. (2006). Adipose tissue: stem cells and beyond. Clin. Plast Surg. 33, 55–62.

    Article  PubMed  Google Scholar 

  • Traktuev, D.O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., Johnstone, B.H., and March, K.L. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele, F., De Bari, C., Moreels, M., Lambrichts, I., Dell’Accio, F., Lippens, P.L., and Luyten, F.P. (2003). Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Arch. Histol. Cytol. 66, 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A., Butler, P.E., and Seifalian, A.M. (2011). Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 44, 86–98.

    Article  PubMed  CAS  Google Scholar 

  • Zengin, E., Chalajour, F., Gehling, U.M., Ito, W.D., Treede, H., Lauke, H., Weil, J., Reichenspurner, H., Kilic, N., and Ergün, S. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133, 1543–1551.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerlin, L., Donnenberg, V.S., Pfeifer, M.E., Meyer, E.M., Péault, B., Rubin, J.P., and Donnenberg, A.D. (2010). Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77, 22–30.

    PubMed  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaejin Cho.

About this article

Cite this article

Ryu, YJ., Cho, TJ., Lee, DS. et al. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Mol Cells 35, 557–564 (2013). https://doi.org/10.1007/s10059-013-0112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0112-z

Keywords

Navigation