Skip to main content
Log in

De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N, del Rosario M, van Bon BW, Hoischen A, de Vries BB, Brunner HG, Veltman JA (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112. doi:10.1038/ng.712

    Article  PubMed  CAS  Google Scholar 

  2. Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, Mort M, Cooper DN (2013) A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol Psychiatry 18(2):141–153. doi:10.1038/mp.2012.58

    Article  PubMed  CAS  Google Scholar 

  3. Depaoli-Roach AA, Park IK, Cerovsky V, Csortos C, Durbin SD, Kuntz MJ, Sitikov A, Tang PM, Verin A, Zolnierowicz S (1994) Serine/threonine protein phosphatases in the control of cell function. Adv Enzym Regul 34:199–224

    Article  CAS  Google Scholar 

  4. Kiely M, Kiely PA (2015) PP2A: the wolf in sheep's clothing? Cancer 7(2):648–669. doi:10.3390/cancers7020648

    Article  Google Scholar 

  5. Gipson TT, Johnston MV (2012) Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders. Neural Plast 2012:486402. doi:10.1155/2012/486402

    PubMed  PubMed Central  Google Scholar 

  6. Lim KC, Crino PB (2013) Focal malformations of cortical development: new vistas for molecular pathogenesis. Neuroscience 252:262–276. doi:10.1016/j.neuroscience.2013.07.037

    Article  PubMed  CAS  Google Scholar 

  7. Chen J, Peterson RT, Schreiber SL (1998) Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun 247(3):827–832. doi:10.1006/bbrc.1998.8792

    Article  PubMed  CAS  Google Scholar 

  8. Graham JM Jr, Wheeler P, Tackels-Horne D, Lin AE, Hall BD, May M, Short KM, Schwartz CE, Cox TC (2003) A new X-linked syndrome with agenesis of the corpus callosum, mental retardation, coloboma, micrognathia, and a mutation in the Alpha 4 gene at Xq13. Am J Med Genet A 123A(1):37–44. doi:10.1002/ajmg.a.20504

    Article  PubMed  Google Scholar 

  9. McCright B, Brothman AR, Virshup DM (1996) Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 p12. Genomics 36(1):168–170

    Article  PubMed  CAS  Google Scholar 

  10. Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G, Ledermann B, Gotz J, Van Leuven F, Goris J, Janssens V (2011) Mice lacking phosphatase PP2A subunit PR61/B'delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 108(17):6957–6962. doi:10.1073/pnas.1018777108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Zencir S, Sike A, Dobson MJ, Ayaydin F, Boros I, Topcu Z (2013) Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes. Biochem J 450(2):311–320. doi:10.1042/BJ20120452

    Article  PubMed  CAS  Google Scholar 

  12. Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31(18):3730–3744. doi:10.1038/emboj.2012.226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228. doi:10.1038/nature14135

    Google Scholar 

  14. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929. doi:10.1056/NEJMoa1206524

    Article  PubMed  Google Scholar 

  15. Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, Nemeth A, Campbell J, Joss S, Gardner M, Zachariou A, Elliott A, Ruark E, van Montfort R, Childhood Overgrowth C, Rahman N (2015) Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. doi:10.1093/hmg/ddv182

    PubMed  PubMed Central  Google Scholar 

  16. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221. doi:10.1038/nature13908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Houge G, Haesen D, Vissers LE, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MR, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KL, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Doskeland SO, Hurles ME, FitzPatrick DR, Janssens V (2015) B56delta-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 125(8):3051–3062. doi:10.1172/JCI79860

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shang L, Cho MT, Retterer K, Folk L, Humberson J, Rohena L, Sidhu A, Saliganan S, Iglesias A, Vitazka P, Juusola J, O'Donnell-Luria AH, Shen Y, Chung WK (2015) Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics 16(4):307–314. doi:10.1007/s10048-015-0454-0

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. doi:10.1038/ng.806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Remmert M, Biegert A, Hauser A, Soding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175. doi:10.1038/nmeth.1818

    Article  CAS  Google Scholar 

  23. Xiang Z, Honig B (2001) Extending the accuracy limits of prediction for side-chain conformations. J Mol Biol 311(2):421–430. doi:10.1006/jmbi.2001.4865

    Article  PubMed  CAS  Google Scholar 

  24. Petrey D, Honig B (2003) GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol 374:492–509. doi:10.1016/S0076-6879(03)74021-X

    Article  PubMed  CAS  Google Scholar 

  25. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A, Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D, Gelb BD (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39(1):75–79. doi:10.1038/ng1939

    Article  PubMed  CAS  Google Scholar 

  26. Wang B, Doan D, Roman Petersen Y, Alvarado E, Alvarado G, Bhandari A, Mohanty A, Mohanty S, Nissen RM (2013) Wdr68 requires nuclear access for craniofacial development. PLoS One 8(1):e54363. doi:10.1371/journal.pone.0054363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54(2):239–243. doi:10.1002/ana.10607

    Article  PubMed  CAS  Google Scholar 

  28. Heron SE, Phillips HA, Mulley JC, Mazarib A, Neufeld MY, Berkovic SF, Scheffer IE (2004) Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 55(4):595–596. doi:10.1002/ana.20028

    Article  PubMed  CAS  Google Scholar 

  29. McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270(44):26123–26128

    Article  PubMed  CAS  Google Scholar 

  30. McCright B, Rivers AM, Audlin S, Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271(36):22081–22089

    Article  PubMed  CAS  Google Scholar 

  31. Martens E, Stevens I, Janssens V, Vermeesch J, Gotz J, Goris J, Van Hoof C (2004) Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B' regulatory subunits of protein phosphatase 2A in mice. J Mol Biol 336(4):971–986. doi:10.1016/j.jmb.2003.12.047

    Article  PubMed  CAS  Google Scholar 

  32. Yu UY, Yoo BC, Ahn JH (2014) Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. Korean J Physiol Pharmacol Off J Korean Physiol Soc Kor Soc Pharmacol 18(2):155–161. doi:10.4196/kjpp.2014.18.2.155

    Article  CAS  Google Scholar 

  33. Ronjat M, Kiyonaka S, Barbado M, De Waard M, Mori Y (2013) Nuclear life of the voltage-gated Cacnb4 subunit and its role in gene transcription regulation. Channels 7(2):119–125. doi:10.4161/chan.23895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441(7089):46–52. doi:10.1038/nature04663

    Article  PubMed  CAS  Google Scholar 

  35. Forester CM, Maddox J, Louis JV, Goris J, Virshup DM (2007) Control of mitotic exit by PP2A regulation of Cdc25C and Cdk1. Proc Natl Acad Sci U S A 104(50):19867–19872. doi:10.1073/pnas.0709879104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A 104(8):2979–2984. doi:10.1073/pnas.0611532104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the probands and families for their generous contributions. This work was supported in part by a grant from the Simons Foundation and from the NIH (GM030518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy K. Chung.

Ethics declarations

Conflicts of interest

Lindsay Henderson, Megan Cho, Leandra Folk, Kyle Retterer, and Kristin Monaghan are employees of GeneDx.

Wendy Chung is a consultant to BioReference Laboratories.

The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Henderson, L.B., Cho, M.T. et al. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 17, 43–49 (2016). https://doi.org/10.1007/s10048-015-0466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-015-0466-9

Keywords

Navigation