Skip to main content

Advertisement

Log in

The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons (MNs) and has no effective treatment. Mutations in the fused in sarcoma (FUS) gene and abnormal aggregation of FUS protein have been reported in ALS. However, the mechanisms involved in ALS are poorly understood. Clinical drug trails have failed due to a lack of appropriate disease models, including a lack of access to MNs from ALS patients. Induced pluripotent stem (iPS) cells derived from patients with ALS provide an indispensable resource for in vitro mechanistic studies and for future patient-specific cell-based therapies. Previous reports demonstrated that viral-based ALS-iPS cells generated from fibroblasts harvested from Caucasian populations are ideal for basic research; however, ALS-iPS cells are precluded from cell-based therapeutic applications because of the risks associated with the integration of viral sequences into the genome and inconvenience associated with dermal biopsies. To establish a model for use in clinical applications, using episomal vectors, we generated an integration-free iPS cell line from peripheral blood mononuclear cells (PBMCs) harvested from a familial ALS (FALS) patient carrying the FUS-P525L mutation and a healthy control. Furthermore, we successfully differentiated ALS patient-specific iPS cells into MNs and subsequently detected cytoplasmic mislocalization and formation of FUS protein aggregates in MNs due to the FUS-P525L mutation. Our findings offer a cell-based disease model for use in further elucidating ALS pathogenesis and provide a tool for exploring gene repair coupled with cell replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rowland LP, Shneider NA (2001) Medical progress: amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  CAS  PubMed  Google Scholar 

  2. Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125(6):777–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Deng HX, Zhai H, Bigio EH, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67(6):739–748

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Deng M, Wei L, Zuo XB, Tian YH, Xie F et al (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45(6):697–700

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  6. Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci U S A 109(15):5803–5808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20(18):3642–3652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K et al (2012) Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Sci Transl Med 4(145):145ra104

    Article  PubMed  Google Scholar 

  9. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Chen J, Li X, Gao S, Deng M (2014) Generation of induced pluripotent stem cells from amyotrophic lateral sclerosis patient carrying SOD1-V14M mutation. Zhonghua Yi Xue Za Zhi 94(27):2143–2147

    CAS  PubMed  Google Scholar 

  11. Yang DJ, Wang XL, Ismail A, Ashman CJ, Valori CF et al (2014) PTEN regulates AMPA receptor-mediated cell viability in iPS-derived motor neurons. Cell Death Dis 5:e1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An Efficient Nonviral Method to Generate Integration-Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells. Stem Cells 31(3):458–466

    Article  CAS  PubMed  Google Scholar 

  13. Su R, Neises A, Zhang XB (2014) Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. Methods Mol Biol. doi:10.1007/7651_2014_139

    Google Scholar 

  14. Deng M, Morita M, Nakano I, Kwiatkowski T, Fan DS (2009) Clinical and genetic features of patients with familial ALS: analysis from a Chinese database. Amyotroph Lateral Scler 10(Suppl):133

    Google Scholar 

  15. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Motor Neuron Disord 1(5):293–299

    Article  CAS  Google Scholar 

  16. Conte A, Lattante S, Zollino M, Marangi G, Luigetti M et al (2012) P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul Disord 22(1):73–75

    Article  PubMed  Google Scholar 

  17. Meng XM, Neises A, Su RJ, Payne KJ, Ritter L et al (2012) Efficient Reprogramming of Human Cord Blood CD34(+) Cells Into Induced Pluripotent Stem Cells With OCT4 and SOX2 Alone. Mol Ther 20(2):408–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Su RJ, Yang YD, Neises A, Payne KJ, Wang J, Viswanathan K, Wakeland EK, Fang XD, Zhang XB (2013) Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells. Plos One 8(4):e59908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E, Naldini L (2005) Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105(6):2307–2315

    Article  PubMed  Google Scholar 

  20. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106(1):157–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Meng XM, Baylink DJ, Sheng M, Wang HJ, Gridley DS, Lau KHW, Zhang XB (2012) Erythroid Promoter Confines FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation. Plos One 7(5):e37569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Dowey SN, Huang XS, Chou BK, Ye ZH, Cheng LZ (2012) Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc 7(11):2013–2021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang Y, Jiang Y, Liu S, Sun X, Gao S (2009) Generation of induced pluripotent stem cells from human beta-thalassemia fibroblast cells. Cell Res 19(9):1120–1123

    Article  PubMed  Google Scholar 

  24. Gao Y, Chen J, Li K, Wu T, Huang B et al (2013) Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12(4):453–469

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Wang J, Chen G, Fan D, Deng M (2011) Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 404(2):610–614

    Article  CAS  PubMed  Google Scholar 

  26. Ding QR, Lee YK, Schaefer EAK, Peters DT, Veres A et al (2013) A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models. Cell Stem Cell 12(2):238–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR et al (2009) Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science 323(5918):1205–1208

    Article  CAS  PubMed  Google Scholar 

  28. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

    Article  CAS  PubMed  Google Scholar 

  29. Baumer D, Hilton D, Paine SML, Turner MR, Lowe J, Talbot K, Ansorge O (2010) Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 75(7):611–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Huang EJ, Zhang J, Geser F, Trojanowski JQ, Strober JB, Dickson DW, Brown RH Jr, Shapiro BE, Lomen-Hoerth C (2010) Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol 20(6):1069–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mochizuki Y, Isozaki E, Takao M, Hashimoto T, Shibuya M, Arai M, Hosokawa M, Kawata A, Oyanagi K, Mihara B, Mizutani T (2012) Familial ALS with FUS P525L mutation: two Japanese sisters with multiple systems involvement. J Neurol Sci 323(1–2):85–92

    Article  CAS  PubMed  Google Scholar 

  32. Zou ZY, Peng Y, Feng XH, Wang XN, Sun Q, Liu MS, Li XG, Cui LY (2012) Screening of the FUS gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Eur J Neurol 19(7):977–983

    Article  PubMed  Google Scholar 

  33. Mackenzie IRA, Ansorge O, Strong M, Bilbao J, Zinman L, Ang LC, Baker M, Stewart H, Eisen A, Rademakers R, Neumann M (2011) Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathol 122(1):87–98

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B, Neumann M, Haass C (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29(16):2841–2857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N (2011) Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 69(1):152–162

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZC, Chook YM (2012) Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci U S A 109(30):12017–12021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schwartz JC, Podell ER, Han SSW, Berry JD, Eggan KC, Cech TR (2014) FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol Biol Cell 25(17):2571–2578

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the ALS patients and control in the study. The study was supported by grants from the National Natural Foundation of China (Nos. 81473042, 31171048, 81072374), Beijing Municipal Natural Science Foundation (No. 7112146), and Beijing Nova Program (2009A04)

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaorong Gao or Min Deng.

Additional information

Xinxiu Liu and Jiayu Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, J., liu, W. et al. The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics 16, 223–231 (2015). https://doi.org/10.1007/s10048-015-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-015-0448-y

Keywords

Navigation