Skip to main content
Log in

An exome study of Parkinson’s disease in Sardinia, a Mediterranean genetic isolate

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder of complex aetiology. Rare, highly penetrant PD-causing mutations and common risk factors of small effect size have been identified in several genes/loci. However, these mutations and risk factors only explain a fraction of the disease burden, suggesting that additional, substantial genetic determinants remain to be found. Genetically isolated populations offer advantages for dissecting the genetic architecture of complex disorders, such as PD. We performed exome sequencing in 100 unrelated PD patients from Sardinia, a genetic isolate. SNPs absent from dbSNP129 and 1000 Genomes, shared by at least five patients, and of functional effects were genotyped in an independent Sardinian case-control sample (n = 500). Variants associated with PD with nominal p value <0.05 and those with odds ratio (OR) ≥3 were validated by Sanger sequencing and typed in a replication sample of 2965 patients and 2678 controls from Italy, Spain, and Portugal. We identified novel moderately rare variants in several genes, including SCAPER, HYDIN, UBE2H, EZR, MMRN2 and OGFOD1 that were specifically present in PD patients or enriched among them, nominating these as novel candidate risk genes for PD, although no variants achieved genome-wide significance after Bonferroni correction. Our results suggest that the genetic bases of PD are highly heterogeneous, with implications for the design of future large-scale exome or whole-genome analyses of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58

    Article  PubMed  Google Scholar 

  2. Bonifati V (2014) Genetics of Parkinson’s disease—state of the art, 2013. Parkinsonism Relat Disord 20(Suppl 1):S23–S28

    Article  PubMed  Google Scholar 

  3. Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28:14–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simon-Sanchez J, Mittag F, Buchel F, Sharma M, Gibbs JR, Schulte C, Moskvina V, Durr A, Holmans P, Kilarski LL, Guerreiro R, Hernandez DG, Brice A, Ylikotila P, Stefansson H, Majamaa K, Morris HR, Williams N, Gasser T, Heutink P, Wood NW, Hardy J, Martinez M, Singleton AB, Nalls MA, International Parkinson’s Disease Genomics C, Wellcome Trust Case Control C (2012) Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson’s disease. Hum Mol Genet 21:4996–5009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Peltonen L, Palotie A, Lange K (2000) Use of population isolates for mapping complex traits. Nat Rev Genet 1:182–190

    Article  CAS  PubMed  Google Scholar 

  6. Wang SR, Agarwala V, Flannick J, Chiang CW, Altshuler D, Go TDC, Hirschhorn JN (2014) Simulation of finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland. Am J Hum Genet 94:710–720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Caló CM, Melis A, Vona G, Piras IS (2008) Sardinian population (Italy): a genetic review. Int J Mod Anthropol 1:1–121

    Google Scholar 

  8. Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc Natl Acad Sci U S A 85:6002–6006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Contu D, Morelli L, Santoni F, Foster JW, Francalacci P, Cucca F (2008) Y-chromosome based evidence for pre-neolithic origin of the genetically homogeneous but diverse Sardinian population: inference for association scans. PLoS One 3:e1430

    Article  PubMed Central  PubMed  Google Scholar 

  10. Loudianos G, Dessi V, Lovicu M, Angius A, Figus A, Lilliu F, De Virgiliis S, Nurchi AM, Deplano A, Moi P, Pirastu M, Cao A (1999) Molecular characterization of wilson disease in the Sardinian population—evidence of a founder effect. Hum Mutat 14:294–303

    Article  CAS  PubMed  Google Scholar 

  11. Chio A, Borghero G, Pugliatti M, Ticca A, Calvo A, Moglia C, Mutani R, Brunetti M, Ossola I, Marrosu MG, Murru MR, Floris G, Cannas A, Parish LD, Cossu P, Abramzon Y, Johnson JO, Nalls MA, Arepalli S, Chong S, Hernandez DG, Traynor BJ, Restagno G, Italian Amyotrophic Lateral Sclerosis Genetic C (2011) Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene. Arch Neurol 68:594–598

    Article  PubMed Central  PubMed  Google Scholar 

  12. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  15. Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. Recent developments in Parkinson’s Disease. Macmillan, New York, pp 153–163

    Google Scholar 

  16. Menashe I, Rosenberg PS, Chen BE (2008) PGA: power calculator for case-control genetic association analyses. BMC Genet 9:36

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB, International Parkinson’s Disease Genomics C, Parkinson’s Study Group Parkinson’s Research: The Organized GI, andMe, GenePd, NeuroGenetics Research C, Hussman Institute of Human G, Ashkenazi Jewish Dataset I, Cohorts for H, Aging Research in Genetic E, North American Brain Expression C, United Kingdom Brain Expression C, Greek Parkinson’s Disease C, Alzheimer Genetic Analysis G (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993

    Article  CAS  PubMed  Google Scholar 

  18. Correia Guedes L, Ferreira JJ, Rosa MM, Coelho M, Bonifati V, Sampaio C (2010) Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 16:237–242

    Article  CAS  PubMed  Google Scholar 

  19. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Durr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, Marder K, Mata IF, Mirelman A, Mitsui J, Mizuta I, Nicoletti G, Oliveira C, Ottman R, Orr-Urtreger A, Pereira LV, Quattrone A, Rogaeva E, Rolfs A, Rosenbaum H, Rozenberg R, Samii A, Samaddar T, Schulte C, Sharma M, Singleton A, Spitz M, Tan EK, Tayebi N, Toda T, Troiano AR, Tsuji S, Wittstock M, Wolfsberg TG, Wu YR, Zabetian CP, Zhao Y, Ziegler SG (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11:986–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, Gupta N, Sklar P, Sullivan PF, Moran JL, Hultman CM, Lichtenstein P, Magnusson P, Lehner T, Shugart YY, Price AL, de Bakker PI, Purcell SM, Sunyaev SR (2012) Exome sequencing and the genetic basis of complex traits. Nat Genet 44:623–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Liu DJ, Leal SM (2010) Replication strategies for rare variant complex trait association studies via next-generation sequencing. Am J Hum Genet 87:790–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tsang WY, Wang L, Chen Z, Sanchez I, Dynlacht BD (2007) SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. J Cell Biol 178:621–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12:1163–1170

    Article  CAS  PubMed  Google Scholar 

  25. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, Banki NF, Shoemark A, Burgoyne T, Al Turki S, Hurles ME, Consortium UK, Kohler G, Schroeder J, Nurnberg G, Nurnberg P, Chung EM, Reinhardt R, Marthin JK, Nielsen KG, Mitchison HM, Omran H (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91:672–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Doggett NA, Xie G, Meincke LJ, Sutherland RD, Mundt MO, Berbari NS, Davy BE, Robinson ML, Rudd MK, Weber JL, Stallings RL, Han C (2006) A 360-kb interchromosomal duplication of the human HYDIN locus. Genomics 88:762–771

    Article  CAS  PubMed  Google Scholar 

  27. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, Lalani SR, Graham B, Lee B, Shinawi M, Shen J, Kang SH, Pursley A, Lotze T, Kennedy G, Lansky-Shafer S, Weaver C, Roeder ER, Grebe TA, Arnold GL, Hutchison T, Reimschisel T, Amato S, Geragthy MT, Innis JW, Obersztyn E, Nowakowska B, Rosengren SS, Bader PI, Grange DK, Naqvi S, Garnica AD, Bernes SM, Fong CT, Summers A, Walters WD, Lupski JR, Stankiewicz P, Cheung SW, Patel A (2008) Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 40:1466–1471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kaiser P, Seufert W, Hofferer L, Kofler B, Sachsenmaier C, Herzog H, Jentsch S, Schweiger M, Schneider R (1994) A human ubiquitin-conjugating enzyme homologous to yeast UBC8. J Biol Chem 269:8797–8802

    CAS  PubMed  Google Scholar 

  29. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  30. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M, Elahi E (2008) Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 82:1375–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72:240–245

    Article  PubMed  Google Scholar 

  32. McClatchey AI, Fehon RG (2009) Merlin and the ERM proteins—regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 19:198–206

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29:13971–13980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28:31–40

    Article  CAS  PubMed  Google Scholar 

  36. Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL (2009) Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 18:1779–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nishioka K, Wider C, Vilarino-Guell C, Soto-Ortolaza AI, Lincoln SJ, Kachergus JM, Jasinska-Myga B, Ross OA, Rajput A, Robinson CA, Ferman TJ, Wszolek ZK, Dickson DW, Farrer MJ (2010) Association of alpha-, beta-, and gamma-Synuclein with diffuse Lewy body disease. Arch Neurol 67:970–975

    PubMed  Google Scholar 

  38. Specht CG, Schoepfer R (2004) Deletion of multimerin-1 in alpha-synuclein-deficient mice. Genomics 83:1176–1178

    Article  CAS  PubMed  Google Scholar 

  39. Saito K, Adachi N, Koyama H, Matsushita M (2010) OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. FEBS Lett 584:3340–3347

    Article  CAS  PubMed  Google Scholar 

  40. Wehner KA, Schutz S, Sarnow P (2010) OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol Cell Biol 30:2006–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by BGI-Shenzhen, China, and by grants from the “Stichting ParkinsonFonds”—The Netherlands and the Netherlands Organization for Scientific Research (NWO, VIDI grant, project n. 91786395) to V.B. The samples from Milan, Italy, were obtained from the “Parkinson Institute Biobank” (http://www.parkinsonbiobank.com), member of the Telethon Network of Genetic Biobanks (project n. GTB12001) funded by TELETHON Italy and supported by the “Fondazione Grigioni per il Morbo di Parkinson”.

Ethical standards

All experiments performed in this study comply with the current laws of the countries in which they were performed.

Conflict of interest

MQ, XY, GC, SO, VMS, GJB, LO, JH, NX, JG, VR, DM, CM, MJM, PT, RS, FV, MG, GP, ME, AQ, GA, BAO, MM and JW reports no conflict of interest. LCG reports personal fees from Centro Hospitalar Lisboa Norte. JF reports personal fees from GlaxoSmithKline, Novartis, TEVA, Lundbeck, Solvay, Abbott, BIAL, Merck-Serono, Merz, Ipsen, Grunenthal, Merck Sharp and Dohme, Allergan, Centro Hospitalar Lisboa Norte, Faculdade de Medicina de Lisboa, Fundacao MSD (Portugal) and European Huntington Disease Network. SG reports grants from Italian Telethon Foundation. ET received honoraria for consultancy from Novartis, TEVA, Boehringer Ingelheim, UCB, Solvay and Lundbeck, and he received funding for research from the Spaniard Network for Research on Neurodegenerative Disorders (CIBERNED)-Instituto Carlos III (ISCIII), The Michael J. Fox Foundation for Parkinson’s Research (MJFF) and Fondo de Investigaciones Sanitarias de la Seguridad Social (FISS). VB reports personal compensation for serving as Associate Editor of Parkinsonism & Related Disorders and Section Editor of Current Neurology and Neuroscience Reports, honoraria from the International Parkinson and Movement Disorder Society and Elsevier Ltd and research support from the Erasmus MC, Rotterdam, the Stichting ParkinsonFonds (The Netherlands) and The Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Vincenzo Bonifati.

Additional information

Marialuisa Quadri, Xu Yang, Giovanni Cossu and Simone Olgiati contributed equally to this work and should be considered as joint first authors.

Jun Wang and Vincenzo Bonifati contributed equally to this work and should be considered as joint senior author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quadri, M., Yang, X., Cossu, G. et al. An exome study of Parkinson’s disease in Sardinia, a Mediterranean genetic isolate. Neurogenetics 16, 55–64 (2015). https://doi.org/10.1007/s10048-014-0425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0425-x

Keywords

Navigation