Skip to main content
Log in

Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5 % of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Debray FG, Lambert M, Mitchell GA (2008) Disorders of mitochondrial function. Curr Opin Pediatr 20:471–482

    Article  PubMed  Google Scholar 

  2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  3. Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, Robinson M (2000) High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21:3427–3440

    Article  CAS  PubMed  Google Scholar 

  4. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  CAS  PubMed  Google Scholar 

  5. Milone M, Benarroch EE (2012) Mitochondrial dynamics: general concepts and clinical implications. Neurology 78:1612–1619

    Article  CAS  PubMed  Google Scholar 

  6. Ajroud-Driss S, Fecto F, Ajroud K, Siddique T (2012) Mutations in the nuclear encoded novel mitochondrial protein CHCHD10 cause an autosomal dominant mitochondrial myopathy. Neurology 78

  7. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  PubMed  Google Scholar 

  8. Heiman-Patterson TD, Argov Z, Chavin JM, Kalman B, Alder H, DiMauro S, Bank W, Tahmoush AJ (1997) Biochemical and genetic studies in a family with mitochondrial myopathy. Muscle Nerve 20:1219–1224

    Article  CAS  PubMed  Google Scholar 

  9. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  PubMed  Google Scholar 

  13. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK (2009) A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 5:e1000590

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martherus RS, Sluiter W, Timmer ED, VanHerle SJ, Smeets HJ, Ayoubi TA (2010) Functional annotation of heart enriched mitochondrial genes GBAS and CHCHD10 through guilt by association. Biochem Biophys Res Commun 402:203–208

    Article  CAS  PubMed  Google Scholar 

  16. Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr (2005) Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6:R33

    Article  PubMed Central  PubMed  Google Scholar 

  17. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, Zlotnik A (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80

    Article  CAS  PubMed  Google Scholar 

  18. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS (2011) ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 286:2918–2932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Milone M, Wong LJ (2013) Diagnosis of mitochondrial myopathies. Mol Genet Metab 110:35–41

    Article  CAS  PubMed  Google Scholar 

  20. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345

    Article  PubMed  Google Scholar 

  21. Herrmann JM, Kohl R (2007) Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. J Cell Biol 176:559–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J (2009) Systematic analysis of the twin cx(9)c protein family. J Mol Biol 393:356–368

    Article  CAS  PubMed  Google Scholar 

  23. Banci L, Bertini I, Ciofi-Baffoni S, Tokatlidis K (2009) The coiled coil-helix-coiled coil-helix proteins may be redox proteins. FEBS Lett 583:1699–1702

    Article  CAS  PubMed  Google Scholar 

  24. Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. Mol BioSyst 6:2459–2470

    Article  CAS  PubMed  Google Scholar 

  25. An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS (2012) CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem 287:7411–7426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients and their family members for participating in this study. We also thank Kreshnik B. Ahmeti, LiJun Cheng, and Yi Yang for their technical assistance. This work was supported by the National Institute of Neurological Disorders and Stroke (NS050641); the Les Turner ALS Foundation/Herbert C. Wenske Foundation Professorship; the David C. Asselin MD Memorial Fund; the Vena E. Schaff ALS Research Fund; the George Link, Jr. Foundation; and the Foglia Family Foundation. This work was supported by a grant (R01GM097136) from the National Institutes of Health to VKM. Imaging work was performed at the Northwestern University Cell Imaging Facility generously supported by NCI CCSG P30 CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Senda Ajroud-Driss or Teepu Siddique.

Additional information

Senda Ajroud-Driss and Faisal Fecto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOCX 3591 kb)

Supplementary Figure 2

(DOCX 229 kb)

Supplementary Figure 3

(DOCX 78 kb)

Supplementary Figure 4

(DOCX 349 kb)

Supplementary Table 1

(DOCX 21 kb)

Supplementary Table 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajroud-Driss, S., Fecto, F., Ajroud, K. et al. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy. Neurogenetics 16, 1–9 (2015). https://doi.org/10.1007/s10048-014-0421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0421-1

Keywords

Navigation