Skip to main content
Log in

The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

We report the identification of the first de novo mutation at a highly conserved residue within the polyalanine stretch in the N-terminal region of the brain-dominant protein isoform MeCP2_e1 in a girl with classical Rett syndrome. The missense mutation, p.Ala2Val, leads to severe developmental delay, microcephaly, no language, severe epilepsy, and cognitive impairment. To evaluate the pathogenic potentials of the MECP2 mutation specific to the MeCP2_e1 isoform detected in this patient, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to generate a fusion protein with c-myc, and constructs were transfected in COS7 cells. In vitro studies demonstrated that, like wild-type MeCP2e_1, the N-terminal mutant is localized in the nucleus. Neither transcriptional nor translational effect on the MeCP2_e2 isoform was observed in fibroblasts from the p.Ala2Val patient, suggesting that MeCP2_e1 is involved in other functional process. These data suggest the important involvement of the N-terminus in the function of MeCP2 protein, and provide further evidence for the major impact of a specific MeCP2e_1 deficiency in the development of intellectual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188. doi:10.1038/13810

    Article  CAS  PubMed  Google Scholar 

  2. Kriaucionis S, Bird A (2004) The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 32:1818–1823. doi:10.1093/nar/gkh349

    Article  CAS  PubMed  Google Scholar 

  3. Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36:339–341. doi:10.1038/ng1327

    Article  CAS  PubMed  Google Scholar 

  4. Amir RE, Fang P, Yu Z, Glaze DG, Percy AK, Zoghbi HY, Roa BB, Van den Veyver IB (2005) Mutations in exon 1 of MECP2 are a rare cause of Rett syndrome. J Med Genet 42:e15. doi:10.1136/jmg.2004.026161

    Article  CAS  PubMed  Google Scholar 

  5. Bartholdi D, Klein A, Weissert M, Koenig N, Baumer A, Boltshauser E, Schinzel A, Berger W, Mátyás G (2006) Clinical profiles of four patients with Rett syndrome carrying a novel exon 1 mutation or genomic rearrangement in the MECP2 gene. Clin Genet 69:319–326. doi:10.1111/j.1399-0004.2006.00604.x

    Article  CAS  PubMed  Google Scholar 

  6. Chunshu Y, Endoh K, Soutome M, Kawamura R, Kubota T (2006) A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clin Genet 70:530–531. doi:10.1111/j.1399-0004.2006.00712.x

    Article  CAS  PubMed  Google Scholar 

  7. Quenard A, Yilmaz S, Fontaine H, Bienvenu T, Moncla A, des Portes V, Rivier F, Mathieu M, Raux G, Jonveaux P, Philippe C (2006) Deleterious mutations in exon 1 of MECP2 in Rett syndrome. Eur J Med Genet 49:313–322. doi:10.1016/j.ejmg.2005.11.002

    Article  PubMed  Google Scholar 

  8. Ravn K, Nielsen JB, Schwartz M (2005) Mutations found within exon 1 of MECP2 in Danish patients with Rett syndrome. Clin Genet 67:532–523. doi:10.1111/j.1399-0004.2005.00444.x

    Article  CAS  PubMed  Google Scholar 

  9. Saxena A, de Lagarde D, Leonard H, Williamson SL, Vasudevan V, Christodoulou J, Thompson E, MacLeod P, Ravine D (2006) Lost in translation: translational interference from a recurrent mutation in exon 1 of MECP2. J Med Genet 43:470–477. doi:10.1136/jmg.2005.036244

    Article  CAS  PubMed  Google Scholar 

  10. Hagberg B, Hanefeld F, Percy A, Skjeldal O (2002) An update on clinically applicable diagnostic criteria in Rett syndrome. Comments to Rett Syndrome Clinical Criteria Consensus Panel Satellite to European Paediatric Neurology Society Meeting, Baden, Germany, 11 September 2001. Eur J Paediatr Neurol 6:293–297. doi:10.1053/ejpn.2002.0612

    Article  PubMed  Google Scholar 

  11. Kerr AM, Nomura Y, Armstrong D, Anvret M, Belichenko PV, Budden S, Cass H, Christodoulou J, Clarke A, Ellaway C, d’Esposito M, Francke U, Hulten M, Julu P, Leonard H, Naidu S, Schanen C, Webb T, Engerstrom IW, Yamashita Y, Segawa M (2001) Guidelines for reporting clinical features in cases with MECP2 mutations. Brain Dev 23:208–211. doi:10.1016/S0387-7604(01)00193-0

    Article  CAS  PubMed  Google Scholar 

  12. Poirier K, Francis F, Hamel B, Moraine C, Fryns JP, Ropers HH, Chelly J, Bienvenu T (2005) Mutations in exon 1 of MECP2B are not a common cause of X-linked mental retardation in males. Eur J Hum Genet 13:523–524. doi:10.1038/sj.ejhg.5201399

    Article  CAS  PubMed  Google Scholar 

  13. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239

    CAS  PubMed  Google Scholar 

  14. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301

    Article  CAS  PubMed  Google Scholar 

  15. Ding Y, Chan CY, Lawrence CE (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11:1157–1166. doi:10.1261/rna.2500605

    Article  CAS  PubMed  Google Scholar 

  16. Shahbazian MD, Sun Y, Zoghbi HY (2002) Balanced X chromosome inactivation patterns in the Rett syndrome brain. Am J Med Genet 111:164–168. doi:10.1002/ajmg.10557

    Article  PubMed  Google Scholar 

  17. Koch C, Strätling WH (2004) DNA binding of methyl-CpG-binding protein MeCP2 in human MCF7 cells. Biochemistry 43:5011–5021. doi:10.1021/bi0359271

    Article  CAS  PubMed  Google Scholar 

  18. Kumar A, Kamboj S, Malone BM, Kudo S, Twiss JL, Czymmek KJ, LaSalle JM, Schanen NC (2008) Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J Cell Sci 121:1128–1137 . doi:10.1242/jcs.016865

    Article  CAS  PubMed  Google Scholar 

  19. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405. doi:10.1093/bioinformatics/16.4.404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of ANR-Maladies rares (ANR-6-MRAR-003-01; ANR-e-Rare EuroRETT). JN is currently funded by INSERM (Institut National la Recherche Scientifique; Poste d’acceuil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Bienvenu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fichou, Y., Nectoux, J., Bahi-Buisson, N. et al. The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenetics 10, 127–133 (2009). https://doi.org/10.1007/s10048-008-0161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0161-1

Keywords

Navigation