Skip to main content

Advertisement

Log in

Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel

  • Original Article
  • Artificial Skin, Muscle, Bone / Joint, Neuron
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Repair of large segmental defects of long bones are a tremendous challenge that calls for a novel approach to supporting immediate weight bearing and bone regeneration. This study investigated the functional and biological characteristics of a combination of a tailor-made titanium mesh cage with a plate (tTMCP) with tetrapod-shaped alpha tricalcium phosphate granules (TB) and basic fibroblast growth factor (bFGF)-binding ion complex gel (f-IC gel) to repair 20-mm segmental radial defects in dogs. The defects were created surgically in 18 adult beagle dogs and treated by implantation of tTMCPs with TB with (TB-gel group) or without (TB group) f-IC gel. Each tTMCP fitted the defect well, and all dogs could bear weight on the affected limb immediately after surgery. Dogs were euthanized 4, 8 and 24 weeks after implantation. Histomorphometry showed greater infiltration of new vessels and higher bone union rate in the TB-gel group than in the TB group. The lamellar bone volume and mineral apposition rate did not differ significantly between the groups, indicating that neovascularization may be the primary effect of f-IC gel on bone regeneration. This combination method which is tTMCP combined with TB and f-IC gel, would be useful for the treatment of segmental long bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heissler E, Fischer FS, Bolouri S, Lehmann T, Mathar W, Gebhardt A, Lanksch W, Bier J. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg. 1998;27:334–8.

    Article  CAS  PubMed  Google Scholar 

  2. Winder J, Cooke RS, Gray J, Fannin T, Fegan T. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol. 1999;23:26–8.

    Article  CAS  PubMed  Google Scholar 

  3. Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa K, Kawaguchi H, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung UI, Sasaki N. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs. 2006;9:234–40.

    Article  CAS  PubMed  Google Scholar 

  4. Choi SJ, Lee JI, Igawa K, Sugimori O, Suzuki S, Mochizuki M, Nishimura R, Chung UI, Sasaki N. Bone regeneration within a tailor-made tricalcium phosphate bone implant with both horizontal and vertical cylindrical holes transplanted into the skull of dogs. J Artif Organs. 2009;12:274–7.

    Article  CAS  PubMed  Google Scholar 

  5. Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti-6Al-4 V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20–32.

    Article  CAS  PubMed  Google Scholar 

  6. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput. 2011;49:1347–52.

    Article  CAS  PubMed  Google Scholar 

  7. Wang G, Li J, Khadka A, Hsu Y, Li W, Hu J. CAD/CAM and rapid prototyped titanium for reconstruction of ramus defect and condylar fracture caused by mandibular reduction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2012;113:356–61.

    Article  Google Scholar 

  8. Glowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res. 1998;355:S82–9.

    Article  Google Scholar 

  9. Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42:556–61.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Street J, Bao M, deGuzman L, Bunting S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RAD, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99:9656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX, Jiang S, Mu TW, Qin JJ, Chen SY, Jin D. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010;31:9452–61.

    Article  CAS  PubMed  Google Scholar 

  12. Stewart R, Goldstein J, Eberhardt A, Gabriel Chu GT-M, Gilbert S. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma. 2011;25:472–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Repair of rabbit segmental femoral defects by using a combination of tetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials. 2013;34:9056–62.

    Article  CAS  PubMed  Google Scholar 

  14. Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Bone regeneration by the combined use of tetrapod-shaped calcium phosphate granules with basic fibroblast growth factor-binding ion complex gel in canine segmental radial defects. J Vet Med Sci. 2014;76:955–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi S, Liu IL, Yamamoto K, Igawa K, Mochizuki M, Sakai T, Echigo R, Honnami M, Suzuki S, Chung UI, Sasaki N. Development and evaluation of tetrapod-shaped granular artificial bones. Acta Biomater. 2012;8:2340–7.

    Article  CAS  PubMed  Google Scholar 

  16. Saito H, Taguchi T, Aoki H, Murabayashi S, Mitamura Y, Tanaka J, Tateishi T. pH-responsive swelling behavior of collagen gels prepared by novel crosslinkers based on naturally derived di- or tricarboxylic acids. Acta Biomater. 2007;3:89–94.

    Article  CAS  PubMed  Google Scholar 

  17. Saito H, Murabayashi S, Mitamura Y, Taguchi T. Unusual cell adhesion and antithrombogenic behavior of citric acid-cross-linked collagen matrices. Biomacromolecules. 2007;8:1992–8.

    Article  CAS  PubMed  Google Scholar 

  18. Takayama T, Taguchi T, Koyama H, Sakari M, Kamimura W, Takato T, Miyata T, Nagawa H. The growth of a vascular network inside a collagen-citric acid derivative hydrogel in rats. Biomaterials. 2009;30:3580–7.

    Article  CAS  PubMed  Google Scholar 

  19. Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB. Long bone defect models for tissue engineering applications: criteria for choice. Tissue Enq Part B Rev. 2010;16:263–71.

    Article  Google Scholar 

  20. Cobos JA, Lindsey RW, Gugala Z. The cylindrical titanium mesh cage for treatment of a long bone segmental defect: description of a new technique and report of two cases. J Orthop Trauma. 2000;14:54–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ostermann PA, Haase N, Rubberdt A, Wich M, Ekkernkamp A. Management of a long segmental defect at the proximal meta-diaphyseal junction of the tibia using a cylindrical titanium mesh cage. J Orthop Trauma. 2002;16:597–601.

    Article  PubMed  Google Scholar 

  22. Attias N, Lehman RE, Bodell LS, Lindsey RW. Surgical management of a long segmental defect of the humerus using a cylindrical titanium mesh cage and plates: a case report. J Orthop Trauma. 2005;19:211–6.

    Article  PubMed  Google Scholar 

  23. Clements JR, Carpenter BB, Pourciau JK. Treating segmental bone defects: a new technique. J Foot Ankle Surg. 2008;47:350–6.

    Article  PubMed  Google Scholar 

  24. Segal U, Shani J. Surgical management of large segmental femoral and radial bone defects in a dog: through use of a cylindrical titanium mesh cage and a cancellous bone graft. Vet Comp Orthop Traumatol. 2010;23:66–70.

    CAS  PubMed  Google Scholar 

  25. Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res. 2006;24:1438–53.

    Article  CAS  PubMed  Google Scholar 

  26. Panchbhavi VK, Trevino SG. Use of titanium cages with cancellous bone graft in hind foot fusion: literature review and case reports with complications. Foot Ankle Surg. 2003;9:51–5.

    Article  Google Scholar 

  27. Carlsson Å. Unsuccessful use of a titanium mesh cage in ankle arthrodesis: a report on three cases operated on due to a failed ankle replacement. J Foot Ankle Surg. 2008;47:337–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science (JSPS) through the “Founding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” which was initiated by the Council for Science and Technology Policy (CSTP), and also by Research and Development Programs for Three-dimensional Complex Organ Structures and for Autonomous Regeneration Devices from the New Energy and Industrial Technology Development Organization (NEDO). We sincerely thank Dr. Akemi Ito, Ito Bone Histomorphometry Institute, Niigata, Japan for her invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Mochizuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honnami, M., Choi, S., Liu, Il. et al. Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. J Artif Organs 20, 91–98 (2017). https://doi.org/10.1007/s10047-016-0918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-016-0918-5

Keywords

Navigation