Skip to main content
Log in

Is cardiopulmonary exercise testing essential to indicate ventricular assist device implantation in patients with INTERMACS profile 4–7?

  • Original Article
  • Artificial Heart (Clinical)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Cardiopulmonary exercise testing (CPXT) is a promising tool for predicting 2-year cardiac death or ventricular assist device (VAD) implantation in patients assigned to INTERMACS profile 4–7. However, CPXT is not available in all hospitals. We evaluated 130 patients <65 years old with advanced heart failure assigned to INTERMACS profile 4–7 who underwent CPXT. CPXT scores (0–8 points), which we created recently, and the Seattle HF Model (SHFM) scores were both significant predictors of 2-year cardiac death or VAD implantation (14 events) by Cox-regression analysis (P < 0.05 for both) and had comparable areas under the curve (AUCs) in receiver operating characteristic analyses (0.811 vs. 0.737, P > 0.05). The combination score: age <46 years and serum sodium concentration <137 mEq/L, both of which were significant predictors of cardiac death or VAD implantation by uni/multivariate Cox-regression analyses, had a significantly higher AUC than did CPXT scores (0.909, P < 0.05). In a validation study, the AUC of the combination score was comparable with that of SHFM among 52 patients <65 years old receiving adaptive servo-ventilator treatment (0.753 vs. 0.794, P > 0.05). In conclusion, VAD indication may be discussed without CPXT in patients <65 years old with INTERMACS profile 4–7 at least in the current Japanese situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kinugawa K. How to treat stage D heart failure?—when to implant left ventricular assist devices in the era of continuous flow pumps? Circ J. 2011;75:2038–45.

    Article  CAS  Google Scholar 

  2. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33:555–64.

    Article  PubMed  Google Scholar 

  3. Rogers JG, Boyle AJ, O’Connell JB, Horstmanshof DA, Haas DC, Slaughter MS, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: design and rationale of the ROADMAP clinical trial. Am Heart J. 2015;169:205–10 (e20).

    Article  PubMed  Google Scholar 

  4. Imamura T, Kinugawa K, Hatano M, Fujino T, Inaba T, Maki H, et al. Status 2 patients had poor prognosis without mechanical circulatory support. Circ J. 2014;78:1396–404.

    Article  CAS  PubMed  Google Scholar 

  5. Levy WC, Aaronson KD, Dardas TF, Williams P, Haythe J, Mancini D. Prognostic impact of the addition of peak oxygen consumption to the Seattle Heart Failure Model in a transplant referral population. J Heart Lung Transplant. 2012;31:817–24.

    Article  PubMed  Google Scholar 

  6. Goda A, Williams P, Mancini D, Lund LH. Selecting patients for heart transplantation: comparison of the Heart Failure Survival Score (HFSS) and the Seattle heart failure model (SHFM). J Heart Lung Transplant. 2011;30:1236–43.

    Article  PubMed  Google Scholar 

  7. Imamura T, Kinugawa K, Nitta D, Inaba T, Maki H, Hatano M, et al. Novel scoring system using cardiopulmonary exercise testing predicts prognosis in heart failure patients receiving guideline-directed medical therapy. Circ J. 2015;79:1068–75.

    Article  PubMed  Google Scholar 

  8. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112:e154–235.

    Article  PubMed  Google Scholar 

  9. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.

    Article  PubMed  Google Scholar 

  10. Hori M, Nagai R, Izumi T, Matsuzaki M. Efficacy and safety of bisoprolol fumarate compared with carvedilol in Japanese patients with chronic heart failure: results of the randomized, controlled, double-blind, Multistep Administration of bisoprolol IN Chronic Heart Failure II (MAIN-CHF II) study. Heart Vessels. 2014;29:238–47.

    Article  PubMed  Google Scholar 

  11. McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD pilot study investigators. Circulation. 1999;100:1056–64.

    Article  CAS  PubMed  Google Scholar 

  12. Gorodeski EZ, Chu EC, Chow CH, Levy WC, Hsich E, Starling RC. Application of the Seattle Heart Failure Model in ambulatory patients presented to an advanced heart failure therapeutics committee. Circ Heart Fail. 2010;3:706–14.

    Article  PubMed  Google Scholar 

  13. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

    CAS  PubMed  Google Scholar 

  14. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.

    Article  PubMed  Google Scholar 

  15. Imamura T, Kinugawa K, Nitta D, Komuro I. Long-term adaptive servo-ventilator treatment prevents cardiac death and improves clinical outcome. Int Heart J. 2015;57:47–52 (In Press).

    Article  Google Scholar 

  16. Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, et al. Perioperative hypoalbuminemia affects improvement in exercise tolerance after left ventricular assist device implantation. Circ J. 2015;79:1970–5.

    Article  PubMed  Google Scholar 

  17. Ketchum ES, Moorman AJ, Fishbein DP, Mokadam NA, Verrier ED, Aldea GS, et al. Predictive value of the Seattle Heart Failure Model in patients undergoing left ventricular assist device placement. J Heart Lung Transplant. 2010;29:1021–5.

    Article  PubMed  Google Scholar 

  18. Benbarkat H, Addetia K, Eisenberg MJ, Sheppard R, Filion KB, Michel C. Application of the Seattle heart failure model in patients >80 years of age enrolled in a tertiary care heart failure clinic. Am J Cardiol. 2012;110:1663–6.

    Article  PubMed  Google Scholar 

  19. Regoli F, Scopigni F, Leyva F, Landolina M, Ghio S, Tritto M, et al. Validation of Seattle Heart Failure Model for mortality risk prediction in patients treated with cardiac resynchronization therapy. Eur J Heart Fail. 2013;15:211–20.

    Article  PubMed  Google Scholar 

  20. Levy WC, Mozaffarian D, Linker DT, Farrar DJ, Miller LW. Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant. 2009;28:231–6.

    Article  PubMed  Google Scholar 

  21. Kalogeropoulos AP, Georgiopoulou VV, Giamouzis G, Smith AL, Agha SA, Waheed S, et al. Utility of the Seattle Heart Failure Model in patients with advanced heart failure. J Am Coll Cardiol. 2009;53:334–42.

    Article  PubMed  Google Scholar 

  22. Dardas T, Li Y, Reed SD, O’Connor CM, Whellan DJ, Ellis SJ, et al. Incremental and independent value of cardiopulmonary exercise test measures and the Seattle Heart Failure Model for prediction of risk in patients with heart failure. J Heart Lung Transplant. 2015;34:1017–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levy WC, Arena R, Wagoner LE, Dardas T, Abraham WT. Prognostic impact of the addition of ventilatory efficiency to the Seattle Heart Failure Model in patients with heart failure. J Card Fail. 2012;18:614–9.

    Article  PubMed  Google Scholar 

  24. Kuramoto Y, Yamada T, Tamaki S, Okuyama Y, Morita T, Furukawa Y, et al. Usefulness of cardiac iodine-123 meta-iodobenzylguanidine imaging to improve prognostic power of Seattle heart failure model in patients with chronic heart failure. Am J Cardiol. 2011;107:1185–90.

    Article  Google Scholar 

  25. Vakil KP, Dardas T, Dhar S, Moorman A, Anand I, Maggioni A, et al. Impact of renal dysfunction on the Seattle Heart Failure Model. J Heart Lung Transplant. 2014;33:163–9.

    Article  PubMed  Google Scholar 

  26. Cabassi A, de Champlain J, Maggiore U, Parenti E, Coghi P, Vicini V, et al. Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model: results from a pilot study in elderly chronic heart failure patients. Int J Cardiol. 2013;168:3334–9.

    Article  PubMed  Google Scholar 

  27. Fujino T, Kinugawa K, Hatano M, Imamura T, Muraoka H, Minatsuki S, et al. Low blood pressure, low serum cholesterol and anemia predict early necessity of ventricular assist device implantation in patients with advanced heart failure at the time of referral from non-ventricular assist device institutes. Circ J. 2014;78:2882–9.

    Article  PubMed  Google Scholar 

  28. Jao GT, Chiong JR. Hyponatremia in acute decompensated heart failure: mechanisms, prognosis, and treatment options. Clin Cardiol. 2010;33:666–71.

    Article  PubMed  Google Scholar 

  29. Sato N, Gheorghiade M, Kajimoto K, Munakata R, Minami Y, Mizuno M, et al. Hyponatremia and in-hospital mortality in patients admitted for heart failure (from the ATTEND registry). Am J Cardiol. 2013;111:1019–25.

    Article  CAS  PubMed  Google Scholar 

  30. Gheorghiade M, Abraham WT, Albert NM, Gattis Stough W, Greenberg BH, O’Connor CM, et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J. 2007;28:980–8.

    Article  CAS  PubMed  Google Scholar 

  31. Imamura T, Kinugawa K, Hatano M, Fujino T, Inaba T, Maki H, et al. Low cardiac output stimulates vasopressin release in patients with stage d heart failure. Circ J. 2014;78:2259–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teruhiko Imamura or Koichiro Kinugawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamura, T., Kinugawa, K., Nitta, D. et al. Is cardiopulmonary exercise testing essential to indicate ventricular assist device implantation in patients with INTERMACS profile 4–7?. J Artif Organs 19, 226–232 (2016). https://doi.org/10.1007/s10047-016-0893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-016-0893-x

Keywords

Navigation