Skip to main content
Log in

Influence of a novel electrocardiogram-synchronized rotational-speed-change system of an implantable continuous-flow left ventricular assist device (EVAHEART) on hemolytic performance

  • Brief Communication
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

We developed a novel controller for a continuous-flow left ventricular assist device (EVAHEART) that can change the pump’s rotational speed (RS) in synchronization with a patient’s myocardial electrocardiogram (ECG) with the aim of facilitating cardiac recovery. We previously presented various applications of this system in animal models, but there remained a concern that the repeated acceleration and deceleration of the impeller may induce additional hemolysis. In this study, we evaluated the blood trauma and motor power consumption induced by our system in a mock circulation. We evaluated our system with a 60-bpm pulse frequency and a variance between the high and low RSs of 500 rpm (EVA-P; n = 4). The continuous modes of EVAHEART (EVA-C; n = 4) and ROTAFLOW (n = 4) were used as controls. The pumps were examined at a mean flow rate of 5.0 ± 0.2 L/min against a mean pressure head of 100 ± 3 mmHg for a 4-h period. As a result, the normalized indexes of the hemolysis levels of EVA-P and EVA-C were 0.0023 ± 0.0019 and 0.0023 ± 0.0025, respectively, and their difference was not significant. The estimated mean motor power consumptions of EVA-C and EVA-P were 6.24 ± 0.33 and 7.19 ± 0.93 W, respectively. When a novel ECG-synchronized RS-change system was applied to EVAHEART, the periodic RS change with a 500-rpm RS variance did not affect the hemolysis at a 60-bpm pulse frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ando M, Nishimura T, Takewa Y, Yamazaki K, Kyo S, Ono M, et al. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility. Artif Organs. 2011;35:941–7.

    Article  PubMed  Google Scholar 

  2. Ando M, Takewa Y, Nishimura T, Yamazaki K, Kyo S, Ono M, et al. A novel counterpulsation mode of rotary left ventricular assist device can enhance myocardial perfusion. J Artif Organs. 2011;14:185–91.

    Article  PubMed  Google Scholar 

  3. Kishimoto Y, Takewa Y, Arakawa M, Umeki A, Ando M, Nishimura T, et al. Development of a novel drive mode to prevent aortic insufficiency during continuous-flow LVAD support by synchronizing rotational speed with heartbeat. J Artif Organs. 2013;16:129–37.

    Article  PubMed  Google Scholar 

  4. Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, et al. Change of coronary flow by continuous-flow left ventricular assist device with cardiac beat synchronizing system (native heart load control system) in acute ischemic heart failure model. Circ J. 2013;77:995–1000.

    Article  PubMed  Google Scholar 

  5. Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, et al. Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs. 2012;15:128–33.

    Article  PubMed  Google Scholar 

  6. Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Adachi H, et al. Alternation of left ventricular load by a continuous-flow left ventricular assist device with a native heart load control system in a chronic heart failure model. J Thorac Cardiovasc Surg. 2014. doi:10.1016/j.jtcvs.2013.12.049. (Epub ahead of print).

  7. Ando M, Nishimura T, Takawa Y, Ogawa D, Yamazaki K, Kashiwa K, et al. A novel counterpulse drive mode of continuous-flow left ventricular assist device can minimize intracircuit backward flow during pump weaning. J Artif Organs. 2011;14:74–9.

    Article  PubMed  Google Scholar 

  8. Ando M, Nishimura T, Takewa Y, Kyo S, Ono M, Taenaka Y, et al. Creating an ideal “off-test mode” for rotary left ventricular assist devices: establishing a safe and appropriate weaning protocol after myocardial recovery. J Thorac Cardiovasc Surg. 2012;143:1176–82.

    Article  PubMed  Google Scholar 

  9. ASTM. ASTM F1841-91. Standard practice for assessment of hemolysis in continuous flow blood pumps. 2005.

  10. Sobieski MA, Giridharan GA, Ising M, Koenig SC, Slaughter MS. Blood trauma testing of CentriMag and RotaFlow devices: a pilot study. Artif Organs. 2012;36:677–82.

    Article  PubMed  Google Scholar 

  11. Araki K, Taenaka Y, Masuzawa T, Wakisaka Y, Nakatani T, Akagi H, et al. In vitro performance in centrifugal blood pumps. Jpn J Artif Organs. 1994;23:898–903.

    Google Scholar 

  12. Tayama E, Nakazawa T, Takami Y, Ohtsubo S, Ohbayashi Y, Andrade AJ, et al. The hemolysis test of Gyro C1E3 pump in pulsatile mode. Artif Organs. 1997;21:657–9.

    Google Scholar 

  13. Tayama E, Niimi Y, Takami Y, Ohashi Y, Ohtsuka G, Glueck JA, et al. Hemolysis test of a centrifugal pump in a pulsatile mode: the effect of pulse rate and RPM variance. Artif Organs. 1997;21:1284–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kono S, Nishimura K, Yamada T, Oonishi T, Tsukiya T, Akamatsu T, et al. In vivo and in vitro evaluation of the pulsatile mode of a magnetically suspended centrifugal pump. ASAIO J. 1997;43:M580–4.

    Article  CAS  PubMed  Google Scholar 

  15. Yamazaki K, Kihara S, Akimoto T, Tagusari O, et al. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg. 2002;50:461–5.

    Article  PubMed  Google Scholar 

Download references

Conflict of interests

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kishimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, S., Date, K., Arakawa, M. et al. Influence of a novel electrocardiogram-synchronized rotational-speed-change system of an implantable continuous-flow left ventricular assist device (EVAHEART) on hemolytic performance. J Artif Organs 17, 373–377 (2014). https://doi.org/10.1007/s10047-014-0787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-014-0787-8

Keywords

Navigation