Skip to main content

Advertisement

Log in

Delivery system for autologous growth factors fabricated with low-molecular-weight heparin and protamine to attenuate ischemic hind-limb loss in a mouse model

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Frozen and thawed platelet-rich plasma (PRP) contains high concentrations of various growth factors, such as fibroblast growth factor (FGF)-2, vascular endothelial growth factor, and hepatocyte growth factor. We previously reported that low-molecular-weight heparin/protamine microparticles (LH/P MPs) are useful as biodegradable carriers for the controlled release of FGF-2. In this study, we examined the ability of PRP/LH/P MPs to prevent limb loss in an induced ischemic hind-limb model that used adult BALB/c-nu/nu male mice. One day after inducing ischemia, intramuscular injections of a PRP/LH/P MPs solution were administered into several sites of the ischemic hind limb. Seven days and onward after the injections, the PRP/LH/P MPs-treated and PRP-treated groups recovered from ischemia, as reflected by the improved oxygen saturation. In the PRP-treated group, however, the level of recovery of oxygen saturation after ischemia decreased after 14 days. From the 21st day onward, there was a significant difference between those two groups. In the LH/P MPs-treated group, a partial recovery occurred only in the early period. The saline-treated group (i.e., the control) and the noninjection group (i.e., ischemia only) exhibited no recovery. The limb survival rate at 1 year in the ischemia-induced mice injected with PRP/LH/P MPs was approximately 25 % (two of eight mice) but was absent in the other groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham JA, Mergia J, Whang L, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986;234:545–8.

    Article  Google Scholar 

  2. Takeshita S, Tsurumi Y, Couffinahal T, Asahara T, Bauters C, Symes J, Ferrara N, Isner JM. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab Invest. 1996;75:487–501.

    PubMed  CAS  Google Scholar 

  3. VanBelle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor. The case for paracrine amplification of angiogenesis. Circulation. 1998;97:381–90.

    Article  CAS  Google Scholar 

  4. Cote MF, Laroche G, Gagnon E, Chevallier P, Doillon CJ. Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity. Biomaterials. 2004;25:3761–72.

    Article  PubMed  CAS  Google Scholar 

  5. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256–74.

    Article  PubMed  CAS  Google Scholar 

  6. DeBlois C, Cote MF, Doillon CJ. Heparin–fibroblast growth factor–fibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials. 1994;15:665–72.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura S, Nambu M, Ishizuka T, Hattori H, Kanatani Y, Takase B, Kishimoto S, Amano Y, Aoki H, Kiyosawa T, Ishihara M, Maehara T. Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A. 2008;85:619–27.

    PubMed  Google Scholar 

  8. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.

    Article  PubMed  CAS  Google Scholar 

  9. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001;37:1726–32.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura S, Kishimoto S, Nakamura S, Nambu M, Fujita M, Tanaka Y, Mori Y, Tagawa M, Maehara T, Ishihara M. Fragmin/protamine microparticles as cell carriers to enhance viability of adipose-derived stromal cells and their subsequent effect on in vivo neovascularization. J Biomed Mater Res A. 2010;92:1614–22.

    PubMed  Google Scholar 

  11. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.

    Article  PubMed  CAS  Google Scholar 

  12. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000;97:3422–7.

    Article  PubMed  CAS  Google Scholar 

  13. Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation. 1998;98:2081–7.

    Article  PubMed  CAS  Google Scholar 

  14. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hind limb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther. 2001;8:181–9.

    Article  PubMed  CAS  Google Scholar 

  15. Morishita R, Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J, Taniyama Y, Sawa Y, Kaneda Y, Ogihara T. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol. 2011;31:713–20.

    Article  PubMed  CAS  Google Scholar 

  16. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–8.

    Article  PubMed  CAS  Google Scholar 

  17. Man D, Plosker H, Winland-Brown JE. The use of autologous platelet-rich plasma (platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery. Plast Reconstr Surg. 2001;107:229–37.

    Article  PubMed  CAS  Google Scholar 

  18. Bhanot S, Alex JC. Current applications of platelet gels in facial plastic surgery. Fac Plast Surg. 2002;18:27–33.

    Article  Google Scholar 

  19. Pietramaggiori G, Kaipainen A, Czeczuga JM, Wagner CT, Orgill DP. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. Wound Repair Regen. 2006;14:573–80.

    Article  PubMed  Google Scholar 

  20. Sugimori E, Shintani S, Ishikawa K, Hamakawa H. Effects of apatite foam combined with platelet-rich plasma on regeneration of bone defects. Dent Mater J. 2006;25:591–6.

    Article  PubMed  CAS  Google Scholar 

  21. Abuzeni PZ, Alexander RW. Enhancement of autologous fat transplantation with platelet rich plasma. Int J Radiat Oncol Biol Phys. 2010;78:888–96.

    Article  Google Scholar 

  22. Sadati KS, Alexander RW, Corrado AC. Platelet-rich plasma (PRP) utilized to promote greater graft volume retention in autologous fat grafting. Am J Cosm Surg. 2006;23:203–11.

    Google Scholar 

  23. Powell DM, Chang E, Farrior EH. Recovery from deep-plane rhytidectomy following unilateral wound treatment with autologous platelet gel: a pilot study. Arch Fac Plast Surg. 2001;3:245–50.

    Article  CAS  Google Scholar 

  24. Kurita J, Miyamoto M, Ishii Y, Aoyama J, Takagi G, Naito Z, Tabata Y, Ochi M, Shimizu K. Enhanced vascularization by controlled release of platelet-rich plasma impregnated in biodegradable gelatin hydrogel. Ann Thorac Surg. 2011;92:837–44.

    Article  PubMed  Google Scholar 

  25. Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res A. 2003;64:551–9.

    Article  PubMed  Google Scholar 

  26. Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate: a piece of information. FASEB J. 1996;10:1270–9.

    PubMed  CAS  Google Scholar 

  27. Lindahl U, Lidholt K, Spillmann D, Kjellen L. More to “heparin” than anticoagulation. Thromb Res. 1994;75:1–32.

    Article  PubMed  CAS  Google Scholar 

  28. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular-weight heparin, mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S.

    Article  PubMed  CAS  Google Scholar 

  29. Wolzt M, Weltermann A, Nieszpaur-Los M, Schneider B, Fassolt A, Lechner K, Eichler HG, Kyrle PA. Studies on the neutralizing effects of protamine on unfractionated and low molecular weight heparin (Fragmin) at the site of activation of the coagulation system in man. Thromb Haemost. 1995;73:439–43.

    PubMed  CAS  Google Scholar 

  30. Pan M, Suarez de Lezo J, Medina A, Romero M, Hernández E, Segura J, Melian F, Wangüemert F, Landin M, Benítez F, Amat M, Velasco F, Torres A. In-laboratory removal of femoral sheath following protamine administration in patients having intracoronary stent implantation. Am J Cardiol. 1997;80:1336–8.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura S, Kanatani Y, Kishimoto S, Nakamura S, Ohno C, Horio T, Masanori F, Hattori H, Tanaka Y, Kiyosawa T, Maehara T, Ishihara M. Controlled release of FGF-2 using fragmin/protamine microparticles and effect on neovascularization. J Biomed Mater Res A. 2009;91:814–23.

    PubMed  Google Scholar 

  32. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667–79.

    PubMed  CAS  Google Scholar 

  33. Cho SW, Moon SH, Lee SH, Kang SW, Kim J, Lim JM, Kim HS, Kim BS, Chung HM. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation. 2007;116:2409–19.

    Article  PubMed  CAS  Google Scholar 

  34. Fujita M, Ishihara M, Shimizu M, Obara K, Nakamura S, Kanatani Y, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T. Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen. 2007;15:58–65.

    Article  PubMed  Google Scholar 

  35. Ring FJ. Thermal imaging today and its relevance to diabetes. J Diabetes Sci Technol. 2010;4:857–62.

    PubMed  Google Scholar 

  36. Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006;118:147e–59e.

    Article  PubMed  CAS  Google Scholar 

  37. Zimmermann R, Arnold D, Strasser E, Ringwald J, Schlegel A, Wiltfang J, Eckstein R. Sample preparation technique and white cell content influence the detectable levels of growth factors in platelet concentrates. Vox Sang. 2003;85:283–9.

    Article  PubMed  CAS  Google Scholar 

  38. Takikawa M, Nakamura S, Nakamura S, Nambu M, Ishihara M, Fujita M, Kishimoto S, Doumoto T, Yanagibayashi S, Azuma R, Yamamoto N, Kiyosawa T. Enhancement of vascularization and granulation tissue formation by growth factors in human platelet-rich plasma-containing fragmin/protamine microparticles. J Biomed Mater Res B Appl Biomater. 2011;97:373–80.

    PubMed  Google Scholar 

  39. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004;114:1502–8.

    PubMed  Google Scholar 

  40. Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002;30:97–102.

    Article  PubMed  Google Scholar 

  41. Ishihara M, Ono K. Structure and function of heparin and heparan sulfate; heparinoid library and modification of FGF-activities. Trends Glycosci Glycotechnol. 1998;10:223–33.

    Article  CAS  Google Scholar 

  42. Mori Y, Nakamura S, Kishimoto S, Kawakami M, Suzuki S, Matsui T, Ishihara M. Preparation and characterization of low-molecular-weight heparin/protamine nanoparticles (LMW-H/P NPs) as FGF-2 carrier. Int J Nanomed. 2010;7:147–55.

    Article  Google Scholar 

  43. Kishimoto S, Hattori H, Nakamura S, Amano Y, Kanatani Y, Tanaka Y, Mori Y, Harada Y, Tagawa M, Ishihara M. Expansion and characterization of human bone marrow-derived mesenchymal stem cells cultured on fragmin/protamine microparticle-coated matrix with fibroblast growth factor-2 in low serum medium. Tissue Eng Part C Methods. 2009;15:523–7.

    Article  PubMed  CAS  Google Scholar 

  44. Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2001;31:6279–86.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Koichi Fukuda (Center for Laboratory Animal Science, National Defense Medical College) for his support in the animal experiments, and Dr. Yoshihiro Tanaka (National Defense Medical College) for the discussion. This work was supported by Grant-in-Aid for Young Scientists (B) (Grant No. 22780274) from the Ministry of Education, Science, Sports, Culture, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shingo Nakamura or Tadaaki Maehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, S., Takikawa, M., Ishihara, M. et al. Delivery system for autologous growth factors fabricated with low-molecular-weight heparin and protamine to attenuate ischemic hind-limb loss in a mouse model. J Artif Organs 15, 375–385 (2012). https://doi.org/10.1007/s10047-012-0658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-012-0658-0

Keywords

Navigation