Skip to main content
Log in

Enhancing fractal image compression speed using local features for reducing search space

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The encoding step in full-search fractal image compression is time intensive because a sequential search through a massive domain pool has to be executed to find the best-matched domain for every range block. To afford a fair encoding time, immaterial domain–range block comparisons should be prevented. In this paper, a new local binary feature resemble to local binary patterns method is introduced. This single local feature is robust to noise and can exploit the general structure of the block. Concerning similarity between range–domain blocks, a criterion is allocated dynamically by measuring the pixel diversity among the range block pixels. To avoid redundant calculations, the distance of the general pattern is assessed by the Hamming distance utilizing a pre-computed table. Experimental results show that the presented approach can make FIC a lot faster as opposed to the full-search method and outperform some other identical methods while preserving the quality of the decoded images. Indeed, the proposed method can be utilized inside identical applications that want a specific block size or blocks comparing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnsley M, Saupe D, Vrscay E (2002) Fractals in multimedia. Springer, New York

    Book  MATH  Google Scholar 

  2. Bocchi L, Coppini G, Nori J, Valli G (2004) Detection of single and clustered micro-calcifications in mammograms using fractals models and neural networks. Med Eng Phys 26(4):303–312

    Article  Google Scholar 

  3. Rongrong N, Qiuqi R, Cheng H (2005) Secure semi-blind watermarking based on iteration mapping and image features. Pattern Recogn 38(3):357–368

    Article  MATH  Google Scholar 

  4. Daraee F, Mozaffari S (2014) Watermarking in binary document images using fractal codes. Pattern Recogn Lett 35:120–129

    Article  Google Scholar 

  5. Gdawiec K, Domanska D (2011) Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes. Int J Appl Math Comput Sci 21(4):757–767

    Article  MATH  MathSciNet  Google Scholar 

  6. Kouzani AZ (2008) Classification of face images using local iterated function systems. Mach Vis Appl 19(4):223–248

    Article  Google Scholar 

  7. Barnsley M (1988) Fractal everywhere. Academic, New York

    MATH  Google Scholar 

  8. Jacquin AE (1992) Image coding based on a fractal theory of iterated contractive image transform. IEEE Trans Image Process 81:18–30

    Article  Google Scholar 

  9. Fisher Y (1995) Fractal image compression: theory and applications. Springer, New York

    Book  Google Scholar 

  10. Kovacs T (2008) A fast classification based method for fractal image encoding. Image Vis Comput 26:1129–1136

    Article  Google Scholar 

  11. Duh DJ, Jeng JH, Chen SY (2005) DCT based simple classification scheme for fractal image compression. Image Vis Comput 23:1115–1121

    Article  Google Scholar 

  12. Tong CS, Pi M (2010) Fast fractal image encoding based on adaptive search. IEEE Trans Image Process 10:1269–1277

    Article  Google Scholar 

  13. Xianwei W, Jackson DJ, Chen HC (2005) A fast fractal image encoding method based on intelligent search of standard deviation. Comput Electr Eng 31:402–421. doi:10.1016/j.compeleceng.2005.02.003

    Article  MATH  Google Scholar 

  14. Wang X, Zhang D, Guo X (2013) Novel hybrid fractal image encoding algorithm using standard deviation and DCT coefficients. Nonlinear Dyn 73(1–2):347–355. doi:10.1007/s11071-013-0790-2

    Article  MathSciNet  Google Scholar 

  15. Wang XY, Li FP, Wang SG (2009) Fractal image compression based on spatial correlation and hybrid genetic algorithm. J Vis Commun Image Represent 20:505–510. doi:10.1016/j.jvcir.2009.07.002

    Article  Google Scholar 

  16. Jaferzadeh K, Kiani K, Mozaffari S (2012) Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric. Image Process IET 6(7):1024–1030. doi:10.1049/iet-ipr.2011.0181

    Article  MathSciNet  Google Scholar 

  17. Samavi S, Habibi M, Shirani S, Rowshanbin N (2010) Real time fractal image coder based on characteristic vector matching. Image Vis Comput 28(11):1557–1568. doi:10.1016/j.imavis.2010.03.011

    Article  Google Scholar 

  18. Salarian M, Nadernejad E, Naimi H (2013) A new modified fast fractal image compression algorithm. Imaging Sci J 61(2):219–231

    Article  Google Scholar 

  19. Tang G, Shuang W, Yan Z (2012) An improved fast fractal image coding algorithm. In: Proceedings of 2nd international conference on computer science and network technology, ICCSNT, pp 730–732

  20. Furaoa S, Hasegawa O (2004) A fast no search fractal image coding method. Signal Process Image Commun 19:393–404

    Article  Google Scholar 

  21. Wang XY, Wang SG (2008) An improved no-search fractal image coding method based on a modified gray-level transform. Comput Graph 32:445–450

    Article  Google Scholar 

  22. Wang XY, Wang YX, Yun JJ (2010) An improved no-search fractal image coding method based on a fitting plane. Image Vis Comput 28:1303–1308

    Article  Google Scholar 

  23. Zecaho L et al (2015) Robust structured subspace learning for data representation. IEEE Trans Knowl Data Eng 37(10):2085–2098

    Google Scholar 

  24. Zecaho L et al (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Pattern Anal Mach Intell 26(9):2138–2150

    Google Scholar 

  25. Ojala T, Pietikäainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Int Conf Pattern Recogn 1:582–585

    Article  Google Scholar 

  26. Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns. Springer, London

    Book  Google Scholar 

  27. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhao Y, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Article  Google Scholar 

  29. Backes A (2013) A new approach to estimate lacunarity of texture images. Pattern Recogn Lett 34:1455–1461

    Article  Google Scholar 

  30. Choi SS, Cha SH (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8:43–48

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National 356 Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning 357 (NRF-2015R1A2A1A10052566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Jaferzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaferzadeh, K., Moon, I. & Gholami, S. Enhancing fractal image compression speed using local features for reducing search space. Pattern Anal Applic 20, 1119–1128 (2017). https://doi.org/10.1007/s10044-016-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0551-1

Keywords

Navigation