Skip to main content
Log in

Nonlinear regression applied to interval-valued data

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a nonlinear regression model to interval-valued data. The method extends the classical nonlinear regression model in order to manage interval-valued datasets. The parameter estimates of the nonlinear model considers some optimization algorithms aiming to identify which one presents the best accuracy and precision in the prediction task. A detailed prediction performance study comparing the proposed nonlinear method and other linear regression methods for interval variables is presented based on K-fold cross-validation scheme with synthetic interval-valued datasets generated on a Monte Carlo framework. Moreover, two suitable real interval-valued datasets are considered to illustrate the usefulness and the performance of the approaches presented in this paper. The results suggested that the use of the nonlinear method is suitable for real datasets, as well as in the Monte Carlo simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    MATH  Google Scholar 

  2. Montgomery DC, Peck EA (1982) Introduction to linear regression analysis. Wiley, New York

    MATH  Google Scholar 

  3. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  MATH  Google Scholar 

  4. Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley, New York

    MATH  Google Scholar 

  5. Colby E, Bair E (2013) Cross-validation for nonlinear mixed effects models. J Pharmacokinet Pharmacodyn 40:243–252

    Article  Google Scholar 

  6. Rivas I, Personnaz L (1999) On cross-validation for model selection. Neural Comput 11:863–870

    Article  Google Scholar 

  7. Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88:486–495

    Article  MathSciNet  MATH  Google Scholar 

  8. Li S, Cheng S, Li S, Liang Y (2012) Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91:1–10

    Article  Google Scholar 

  9. Li S, Liu B, Li Y (2013) Selective positive–negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24:301–309

    Article  Google Scholar 

  10. Li S, Wang J, Liu B (2013) A nonlinear model to generate the winner-take-all competition. Commun Nonlinear Sci Numer Simul 18:435–442

    Article  MathSciNet  MATH  Google Scholar 

  11. Sheng W, Chen S, Fairhurst M, Xiao G, Mao J (2014) Multilocal search and adaptive niching based memetic algorithm with a consensus criterion for data clusterin. IEEE Trans Evol Comput 18(5):721–741

    Article  Google Scholar 

  12. Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. Wiley, New York

    Book  MATH  Google Scholar 

  13. Bock HH, Diday E (2000) Analysis of symbolic data, exploratory methods for extracting statistical information from complex data. Springer, Heidelberg

    MATH  Google Scholar 

  14. Diday E, Fraiture-Noirhomme M (2008) Symbolic data analysis and the SODAS software. Wiley, New York

    MATH  Google Scholar 

  15. Billard L, Diday E (2000) Regression analysis for interval-valued data. In: Data analysis, classification and related methods: proceedings of the 7th conference of the international federation of classification societies (IFCS’00). Springer, Belgium, pp 369–374

  16. Brito P, Duarte Silva AP (2012) Modeling interval data with normal and skew-normal distributions. J Appl Stat 39(1):157–170

    Article  Google Scholar 

  17. Blanco-Fernandez A, Corral N, Gonzlez-Rodrguez G (2011) Estimation of a flexible simple linear regression model for interval data based on set arithmetic. Comput Stat Data Anal 55:2568–2578

    Article  Google Scholar 

  18. Lima Neto EA, De Carvalho FAT (2008) Centre and range method to fitting a linear regression model on symbolic interval data. Comput Stat Data Anal 52:1500–1515

    Article  MathSciNet  MATH  Google Scholar 

  19. Maia ALS, De Carvalho FAT (2008) Fitting a least absolute deviation regression model on interval-valued data, In: 6th Brazilian symposium on neural networks, advances in artificial intelligence, pp 3742–3747

  20. Su ZG, Wang PH, Li YG, Zhou ZK (2015) Parameter estimation from interval-valued data using the expectation-maximization algorithm. J Appl Stat 85:1–19

    MathSciNet  Google Scholar 

  21. Xu W (2010), Symbolic data analysis: interval-valued data regression. Ph.D. thesis, University of Georgia, Athens

  22. Lima Neto EA, Cordeiro GM, De Carvalho FAT (2011) Bivariate symbolic regression models for interval-valued variables. J Stat Comput Simul 81:1727–1744

    Article  MathSciNet  MATH  Google Scholar 

  23. Lima Neto EA, Anjos UU (2015) Regression model for interval-valued variables based on copulas. J Appl Stat 42:2010–2029

    Article  MathSciNet  Google Scholar 

  24. Queiroz DCF, Souza RMCR, Cysneiros FJA (2011) Logistic regression-based pattern classifiers for symbolic interval data. Pattern Anal Appl 14:273–282

    Article  MathSciNet  Google Scholar 

  25. Lima Neto EA, De Carvalho FAT (2010) Constrained linear regression models for symbolic interval-valued variables. Comput Stat Data Anal 54:333–347

    Article  MathSciNet  MATH  Google Scholar 

  26. Judge GG, Takayama T (1966) Inequality restrictions in regression analysis. J Am Stat Assoc 61:166–181

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawson CL, Hanson RJ (1974) Solving least squares problem. Prentice-Hall, New York

    MATH  Google Scholar 

  28. Nocedal J, Wight SJ (1999) Numerical optimization. Springer, Heidelberg

    Book  Google Scholar 

  29. Chong EKP, Zak SH (2008) An introduction to optimization, 3rd edn. Wiley, New Jersey

    Book  MATH  Google Scholar 

  30. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochen Zeitung 49:333–369

    Google Scholar 

  31. Van Ness HC, Abbott M (1997) Perrys chemical engineers handbook. McGraw-Hill, New York

    Google Scholar 

  32. Lima Filho LMA, Silva JAA, Cordeiro GM, Ferreira RLC (2012) Modeling the growth of Eucalyptus clones using the Chapman–Richards model with different symmetrical error distributions. Ciência Florest 22(4):777–785

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their careful revision, valuable suggestions, and comments which improved this paper. The authors also would like to thank CAPES (National Foundation for Post-Graduated Programs, Brazil) and CNPq (National Council for Scientific and Technological Development, Brazil) for their financial support. The second author would like to thank FACEPE (Research Agency from the State of Pernambuco, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eufrásio de A. Lima Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima Neto, E.d.A., de Carvalho, F.d.A.T. Nonlinear regression applied to interval-valued data. Pattern Anal Applic 20, 809–824 (2017). https://doi.org/10.1007/s10044-016-0538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0538-y

Keywords

Navigation