Skip to main content
Log in

Adaptive vectorial lifting concept for convolutive blind source separation

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper describes a new multi-resolution approach for the blind separation of convolutive image mixtures in transform domain. The proposed method uses an Adaptive Vectorial case of Quincunx Lifting Scheme (AVQLS), based on wavelet decomposition, and a geometric unmixing algorithm. It proceeds in three steps: first, the mixed images are decomposed by AVQLS. Then, the unmixing algorithm is applied to the more relevant component to get a transformed estimate of the original images. An inverse transform is, thereafter, applied to obtain an estimate of the original images. Experiments carried out on medical images showed that the proposed method yields better separation results than many widely used blind source separation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cichocki LA, Amari SI (2003) Adaptive blind signal and image processing. Wiley, New York

    Google Scholar 

  2. Comon P (1994) Independent component analysis. A new concept. Signal Process 36:287–314

    Article  MATH  Google Scholar 

  3. Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  4. Virtanen I (1982) Entropy correlation coefficient, a measure of statistical dependence for categorized data. Paper presented at the 15th European meeting of statisticians, Palermo, Italy

  5. Elsabrouty M, Bouchard M, Aboulnasr T (2003) A new on-line negentropy-based algorithm for blind source separation. IEEE Int Symp Micro-Nano Mechatron Hum Sci 2:756–759

    Google Scholar 

  6. Amari SI, Cichocki A, Yang HH (1996) A new learning algorithm for blind source separation. In: Advances in neural information processing systems, vol 8, pp 757–763, MIT Press

  7. Bell A (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  MathSciNet  Google Scholar 

  8. Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  9. Cardoso JF (1997) Infomax and maximum likelifood for blind source separation. IEEE Lect Signal Process 4(4):112–114

    Article  Google Scholar 

  10. Hyvarinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9(7):1483–1492

    Article  Google Scholar 

  11. Cardoso J-F, Souloumiac A (1993) Blind beamforming for non Gaussian signals. IEEE Proc-F 140(6):362–370

    Google Scholar 

  12. Chan T-H, Ma W-K, Chi C-Y, Wang Y (2008) A convex analysis framework for blind separation of non-negative sources. IEEE Trans Signal Process 56:5120–5134

    Article  MathSciNet  Google Scholar 

  13. Naanaa W, Nuzillard J-M (2012) A geometric approach to blind separation of nonnegative and dependent source signals. Signal Process 92(11):2775–2784

    Article  Google Scholar 

  14. Chan T-H, Chi C-Y, Huang Y-M, Ma W-K (2009) A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans Signal Process 57(11):4418–4432

    Article  MathSciNet  Google Scholar 

  15. Torkkola K (1996) Blind separation of convolved sources based on information maximization. In: Proceedings of IEEE workshop on neural networks and dignal processing (NNSP6), Kyoto, Japan, pp 423–432

  16. Lee TW, Girolami M, Lambert R (1997) Blind separation of delayed and convolved sources. In: Advances in neural information processing systems, vol 9, pp 758–764, MIT Press

  17. Smaragdis P (1998) Blind separation of convolved mixtures in frequency domain. Neurocomputing 22:21–34

    Article  MATH  Google Scholar 

  18. Dapena A, Bugallo MF, Castedo L (2001) Separation of convolutive mixtures of temporally-white signals: a novel frequency-domain approach, vol 794. In: Ciaramella A, Tagliaferri R, Funaro M (eds) Proceedings of 3rd international workshop on independent component analysis and blind source separation, San Diego, California, pp 179–184

  19. Mitianoudis N, Davies M (2001) New fixed-point ICA algorithm for convolved mixtures. In: Proceedings of 3rd international workshop on independent component analysis and blind source separation, San Diego, California, pp 633–638

  20. Ciaramella A, Tagliaferri R (2006) Separation of convolved mixtures in frequency domain ICA. Int Math Forum 1(16):769–795

    Article  MathSciNet  MATH  Google Scholar 

  21. Sawada H, Kameoka H, Araki S, Ueda N (2012) Efficient algorithms for Multichannel extensions of Itakura-Saito nonnegative matrix factorization, 978-1-4673-0046-9/12 ICASSP

  22. Schobben DWE, Sommen PCW (2002) A frequency domain blind signal separation method based on de-correlation. IEEE Trans Signal Process 50:1855–1865

    Article  Google Scholar 

  23. Araki S, Mukai R, Makino S, Nishikawa T, Saruwatari H (2003) The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans Speech Audio Process 11(2):109–116

    Article  MATH  Google Scholar 

  24. Zibulevsky M, Pearlmutter BA, Bofill P, Kisilev P (2001) Blind source separation by sparse decomposition. In: Roberts SJ, Everson RM (eds) Independent component analysis: principles and practice. Cambridge University Press, Cambridge

    Google Scholar 

  25. Sweldens W (1995) The lifting scheme: a new philosophy in biorthogonal wavelet constructions. SPIE Wavelet Appl Signal Image Process III 2569:68–79

    Article  Google Scholar 

  26. Hattay J, Benazza-Benyahia A, Pesquet J-C (2004) Adaptive lifting schemes using variablesize block segmentation. In: Proceedings of the ACIVS conference, Brussels, Belgium, August 31–September 3, 2004

  27. Hattay J, Belaid S, Naanaa W (2013) Geometric blind source separation using adaptive lifting scheme. 17th IEEE SPA conference SPA’2013 Spetember 2013 Poland

  28. Macias-Garza F, Bovik AC, Diller KR, Aggarwal SJ, Aggarwal JK (1988) The missing cone problem and low-pass distortion in optical serial sectioning microscopy. In: Proceedings of ICASSP, vol 2, pp 890–893

  29. Schechner YY, Shamir J, Kiryati N (2000) Polarization and statistical analysis of scenes containing a semi-reflector. J Opt Soc Am A 17:276–284

    Article  Google Scholar 

  30. Liew SC, Li M, Kwoh LK, Chen P, Lim H (1998) Cloud-free multi-scene mosaics of spot images. In: IEEE International Proceedings on Geoscience and Remote Sensing Sumposium, 1998, vol 2, pp 1083–1085, Seattle, WA, USA

  31. Calderbank AR, Daubechies I, Sweldens W, Yeo B-L (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5:332–369

    Article  MathSciNet  MATH  Google Scholar 

  32. Hattay J, Benazza-Benyahia A, Pesquet J-C (2005) Adaptive lifting for multicomponent image coding through quadtree partitioning. In: Proceedings of the IEEE international conference on acoustics, speech, signal processing, Philadelphia, USA

  33. Benazza-Benyahia A, Pesquet J-C, Hattay J, Masmoudi H (2007) Blockbased adaptive vector lifting schemes for multichannel image coding. Eurasip Int J Image Video Process (IJIVP) 2007(1):10 (article ID 13421)

    Google Scholar 

  34. Gao LX, Yang ZJ, Cai LG, Wang HQ, Chen P (2011) Roller bearing fault diagnosis based on nonlinear redundant lifting wavelet packet analysis. Sensors 11:260–277

    Article  Google Scholar 

  35. Rao CR, Nayak TK (1985) Cross entropy, dissimilarity measures, and characterizations of quadratic entropy. IEEE Trans Inf Theory IT-31(5):589–593

    Article  MathSciNet  MATH  Google Scholar 

  36. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  37. Sharifi K, Garcia L (1995) Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video. IEEE Trans Circuits Syst Video Technol 5(1):52–56

    Article  Google Scholar 

  38. Gish H, Pierce JN (1968) Asymptotically efficient quantizing. IEEE Trans Inf Theory 14:676–683

    Article  Google Scholar 

  39. Bjrck Å (1996) Numerical methods for least squares problems. SIAM, Linköping University, Linköping, Sweden. ISBN 978-0-89871-360-2

  40. Yule GU (1927) On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Philos Trans R Soc Lond Ser A 226:267–298

    Article  MATH  Google Scholar 

  41. Walker G (1931) On periodicity in series of related terms. Proc R Soc Lond Ser A 131:518–532

    Article  MATH  Google Scholar 

  42. Donoho D, Johnstone I (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrica 81:425–455

    Article  MATH  Google Scholar 

  43. Donoho D, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  MATH  Google Scholar 

  44. Donoho D (1995) Denoising by soft thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MATH  Google Scholar 

  45. Motzkin T, Raiffa H, Thompson G, Thrall RJ (1953) The double description method. Annals of math studies, vol 8. Princeton University Press, pp 51–73

  46. Cochran D, Gish H, Sinno D (1995) A geometric approach to multiple-channel signal detection. IEEE Trans Signal Process 43(9):2049–2057

    Article  Google Scholar 

  47. http://sun.iinf.polsl.gliwice.pl/~rstaros/mednat/index.html

  48. Cichocki A, Amari S, Siwek K, Tanaka T, Phan AH et al ICALAB toolboxes. http://www.bsp.brain.riken.jp/ICALAB

  49. Hattay J, Belaid S, Lebrun D, Naanaa W (2014) Digital in-line particle holography: twin-image suppression using sparse blind source separation. Signal Image Video Process 9:1767–1774. doi:10.1007/s11760-014-0646-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel Hattay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattay, J., Belaid, S., Naanaa, W. et al. Adaptive vectorial lifting concept for convolutive blind source separation. Pattern Anal Applic 20, 507–518 (2017). https://doi.org/10.1007/s10044-015-0517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0517-8

Keywords

Navigation