Skip to main content
Log in

Hyperspectral anomaly detection based on uniformly partitioned pixel

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The objective of this paper is to develop an algorithm to detect anomaly in a hyperspectral image. The algorithm is based on a subspace model that is derived statistically. The anomaly detector is defined as the Mahalanobis distance of a residual from a pixel that is partitioned uniformly. The high correlation among adjacent components of the pixel is exploited by partitioning the pixel uniformly to improve anomaly detection. The residual is obtained by partialling out the main background from the pixel by predicting a linear combination of each partition of the pixel with a linear combination of the random variables representing the main background. Experimental results show that the anomaly detector outperforms conventional anomaly detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi NM, Chanussot J (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1(2):6–36

    Article  Google Scholar 

  2. Matteoli S, Diani M, Corsini G (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Trans Aerosp Electron Systems Mag 25(7):5–27

    Article  Google Scholar 

  3. Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, Stocker AD (2002) Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag 19(1):58–69

    Article  Google Scholar 

  4. Chen JY, Reed IS (1987) A detection algorithm for optical targets in clutter. IEEE Trans Aerosp Electron Systems 23(1):394–405

    Google Scholar 

  5. Stocker A, Schaum A (1997) Application of stochastic mixing models to the hyperspectral detection problem. Proc SPIE 3071:47–60

    Article  Google Scholar 

  6. Kwon H, Der SZ, Nasrabadi NM (2003) Using self-organizing maps for anomaly detection in hyperspectral imagery. Optical Eng 42(11):3342–3351

    Article  Google Scholar 

  7. Kwon H, Nasrabadi NM (2005) Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 43(2):388–397

    Article  Google Scholar 

  8. Reed IS, Yu X (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech Signal Process 38(10):1760–1770

    Article  Google Scholar 

  9. Lo E, Ingram J (2008) Hyperspectral anomaly detection based on minimum generalized variance method. Proc SPIE, vol. 6966, no. 696603

  10. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin

  11. Bachega LR, Theiler J (2011) Evaluating and improving local hyperspectral anomaly detectors. IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–8

  12. Chang CI (2005) Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis. IEEE Trans Geosci Remote Sens 43(3):502–518

    Article  Google Scholar 

  13. Ranney KI, Soumekh M (2006) Hyperspectral anomaly detection within the signal subspace. IEEE Geosci Remote Sens Lett 3(3):312–316

    Article  Google Scholar 

  14. Duran O, Petrou M (2009) Spectral unmixing with negative and superunity abundances for subpixel anomaly detection. IEEE Trans Geosci Remote Sens Lett 6(1):152–156

    Article  Google Scholar 

  15. Goldberg H, Nasrabadi N (2007) A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery. Proceedings of SPIE, vol. 6497

  16. Goldberg H, Kwon H, Nasrabadi NM (2007) Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(4):581–585

    Article  Google Scholar 

  17. Schaum AP (2004) Joint subspace detection of hyperspectral targets. Proceeding of IEEE Aerospace Conference, vol. 3

  18. Schaum AP (2007) Hyperspectral anomaly detection beyond RX. Proceeding of SPIE, vol. 6565, no. 656502

  19. Lo E (2014) Variable factorization model based on numerical optimization for hyperspectral anomaly detection. Pattern Anal Appl 17(2):291–310

    Article  MathSciNet  MATH  Google Scholar 

  20. Lo E (2012) Maximized subspace model for hyperspectral anomaly detection. Pattern Anal Appl 15(3):225–235

    Article  MathSciNet  Google Scholar 

  21. Lo E (2013) Variable subspace model for hyperspectral anomaly detection. Pattern Anal Appl 16(3):393–405

    Article  MathSciNet  MATH  Google Scholar 

  22. Lo E, Ingram J (2011) Algorithm for detecting anomaly in hyperspectral imagery using factor analysis. Proceedings of SPIE, vol. 8048, no. 804805

  23. Kerekes JP, Snyder DK (2010) Unresolved target detection blind test project overview. Proceeding of 16th SPIE Conference on algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery, vol. 7695, no. 769521

Download references

Acknowledgments

The author wishes to thank the U.S. Naval Research Laboratory and the Rochester Institute of Technology for the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edisanter Lo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, E. Hyperspectral anomaly detection based on uniformly partitioned pixel. Pattern Anal Applic 19, 297–309 (2016). https://doi.org/10.1007/s10044-014-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0398-2

Keywords

Navigation