Skip to main content
Log in

Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This paper presents dispersion tailoring of photonic crystal fibers creating artificial defect along one of the regular square axes. A finite element method (FEM) has been enforced for numerical investigation of several guiding properties of the PCF covering a broad wavelength range about 1340–1640 nm over the telecommunication windows. According to simulation, the proposed PCF has obtained a strictly single-mode fiber, which has an ultra-high negative dispersion of about −584.60 to −2337.60 ps/(nm-km) and also possible to cover the highest nonlinearity order of 131.91 W−1 km−1 under the operating wavelength. Moreover, the proposed PCF structure experimentally focuses on higher nonlinear coefficient, which successfully compensates the chromatic dispersion of standard single mode in entire band of interest and greatly applicable to the optical transmission system. Additionally, the single mode behavior of S-PCF is explicated by employing V parameter. In our dispersion sensitive analysis, this fiber is significantly more robust due to successfully achieve ultra-high negative dispersion, which gains more promiscuous compared to the prior best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rabiul Hasan, M., Hasan, M.I., Shamim Anower, M.: Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Appl. Optics. 54(32), 9456 (2015)

    Article  ADS  Google Scholar 

  2. Knight, J.C.: Photonic crystal fibres. Nature 424(6950), 847–851 (2003)

    Article  ADS  Google Scholar 

  3. Zsigri, B., Lægsgaard, J., Bjarklev, A.: A novel photonic crystal fibre design for dispersion compensation. J. Opt. A Pure Appl. Opt. 6(7), 717–720 (2004)

    Article  ADS  Google Scholar 

  4. Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightwave Technol. 15(8), 1303–1313 (1997)

    Article  ADS  Google Scholar 

  5. Bulow, H., Buchali, F., Klekamp, A.: Electronic dispersion compensation. J. Lightwave Technol. 26(1) 158–167 (2008)

    Article  ADS  Google Scholar 

  6. Watanabe, S., Naito, T., Chikama, T.: Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation. IEEE Photon. Technol. Lett. 5(1) 92–95 (1993)

    Article  ADS  Google Scholar 

  7. Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: A new class of optical Waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)

    Article  ADS  Google Scholar 

  8. Shen, L.P., Huang, W., Chen, G.X., Jian, S.S.: Design and optimization of photonic crystal fibers for broad-band dispersion compensation. IEEE Photon. Technol. Lett. 15(4), 540–542 (2003)

    Article  ADS  Google Scholar 

  9. Huttunen, A., Torma, P.: “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area”. Opt. Express. 13(2), 627 (2005)

    Article  ADS  Google Scholar 

  10. Prabhakar, G., Peer, A., Rastogi, V., Kumar, A.: Large-effective-area dispersion-compensating fiber design based on dual-core microstructure. Appl. Opt. 52(19), 4505 (2013)

    Article  ADS  Google Scholar 

  11. Maji, P.S., Chaudhuri, P.R.: Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation. Opt. Commun. 325, 134–143 (2014)

    Article  ADS  Google Scholar 

  12. X. Zhao et al.: Photonic crystal fiber for dispersion compensation. Appl. Opt. 47(28), 5190 (2008)

    Article  ADS  Google Scholar 

  13. Maji, P.S., Chaudhuri, P.R.: Designing an ultra-negative dispersion Photonic crystal fiber with square-lattice geometry. ISRN Opt. 2014, 1–7 (2014)

    Article  Google Scholar 

  14. Poli, F. et al.: Single-mode regime of square-lattice photonic crystal fibers. J. Opt. Soc. Am. A, 22(8), 1655 (2005)

    Article  ADS  Google Scholar 

  15. Bouk, A.H., Cucinotta, A., Poli, F., Selleri, S.: Dispersion properties of square-lattice photonic crystal fibers. Opt. Express. 12(5), 941 (2004)

    Article  ADS  Google Scholar 

  16. Birks, T.A., Mogilevtsev, D., Knight, J.C., St. Russell, P.J.: Dispersion compensation using single-material fibers. IEEE Photon. Technol. Lett. 11(6), 674–676, (1999)

    Article  ADS  Google Scholar 

  17. Yang, S., et al.: “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field”. Opt. Express. 14(7), 3015 (2006)

    Article  ADS  Google Scholar 

  18. Matsui, T., Nakajima, K., Sankawa, I.: Dispersion compensation over all the telecommunication bands with double-cladding Photonic-Crystal fiber. J. Lightwave Technol. 25(3), 757–762, (2007)

    Article  ADS  Google Scholar 

  19. Yokokawa, T., Kato, T., Fujii, T., Yamamoto, Y., Honma, N., Kataoka, A., Onishi, M., Sasaoka, E., Okamoto, K.: Dispersion compensating fiber with large negative dispersion around 300 ps/km/nm and its application to compact module for dispersion adjustment. Opt. Fiber Commun. CON. 2, 717–719(2003)

    Google Scholar 

  20. Roberts, P.J. et al.: Control of dispersion in photonic crystal fibers. J. Opt. Fiber Commun. Rep. 2(5), 435–461, (2005)

    Article  Google Scholar 

  21. Yang, S., Zhang, Y., He, L., Xie, S.: Broadband dispersion-compensating photonic crystal fiber. Opt. Lett. 31(19), 2830, (2006)

    Article  ADS  Google Scholar 

  22. Poli, F., Cucinotta, A., Selleri, S., Bouk, A.H.: Tailoring of flattened dispersion in highly Nonlinear Photonic crystal fibers. IEEE Photon. Technol. Lett. 16(4), 1065–1067, (2004)

    Article  ADS  Google Scholar 

  23. Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98(1), 011909, (2011)

    Article  ADS  Google Scholar 

  24. Maji, P.S., Roy Chaudhuri, P.: Dispersion properties of the square-lattice elliptical-core PCFs. Am. J. Opt. Photonics (AJOP). 2(1), 1–6, (2014)

    Google Scholar 

  25. Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7), 927–933, (2002)

    Article  ADS  Google Scholar 

  26. Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Namihira, Y., Hossain, M.A., Goffar Khan, M.A.: Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik-Int. J. Light Electron Opt. 124(19), 3851–3855, (2013)

    Article  Google Scholar 

  27. Kaijage, S.F., et al.: Broadband dispersion compensating octagonal Photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5), 052401, (2009)

    Article  ADS  Google Scholar 

  28. Mortensen, N.A., Folkenberg, J.R., Nielsen, M.D., Hansen, K.P.: Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 28(20), 1879, (2003)

    Article  ADS  Google Scholar 

  29. Hasan, M.I., Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38, (2014)

    Article  ADS  Google Scholar 

  30. Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Anwar Hossain, M.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19(5), 461–467, (2013)

    Article  ADS  Google Scholar 

  31. Haque, M.M., Rahman, M.S., Habib, M.S., Razzak, S.M.A.: Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik-Int. J. Light Electron Opt. 125(11), 2608–2611, (2014)

    Article  Google Scholar 

  32. Hasan, M.I., Habib, M.S., Razzak, S.M.A.: Design of hybrid photonic crystal fiber: Polarization and dispersion properties. Photon. Nanostructures Fundam. Appl. 12(2), 205–211, (2014)

    Article  ADS  Google Scholar 

  33. Hamzaoui, H.El, et al.: Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express. 20(28), 29751, (2012)

    Article  ADS  Google Scholar 

  34. Hasan, M.R., Islam, M.A., Rifat, A.A.: A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64(3), 218–225, (2017)

    Article  ADS  Google Scholar 

  35. Lee, J.H.et al.: A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878, (2002)

    Article  ADS  Google Scholar 

  36. Issa, N.A., van Eijkelenborg, M.A., Henry, G., Fellew, M., Large, M.C.: Fabrication and characterization of microstructured optical fibres with elliptical holes. In Conference on Lasers and Electro-Optics (p. CThX3). Optical Society of America, Washington, DC, (2004)

    Google Scholar 

Download references

Acknowledgements

There is no funding for this research. The authors are grateful to all of the subjects who participated in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.I., Khatun, M. & Ahmed, K. Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity. Opt Rev 24, 147–155 (2017). https://doi.org/10.1007/s10043-017-0308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0308-0

Keywords

Navigation