Skip to main content
Log in

Numerical simulations on the focus-shift multiplexing technique for self-referential holographic data storage

  • Special Section: Regular Paper
  • International Workshop on Holography and related technologies (IWH2015), Okinawa, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

For increasing the data density of holographic data storage (HDS), combining more than two multiplexing techniques is effective. This is also true in self-referential holographic data storage (SR-HDS) that enables holographic recording purely with a single beam. In this paper, a focus-shift multiplexing technique is applied to \(xy\)-shift multiplexed SR-HDS, the feasibility of which has been shown in our previous work. The focus-shift multiplexing technique enables the multiplexing of datapages by slightly changing the focal length of the objective lens. However, the required focus-shift distance for multiplexing and the implementation method of the focus-shift have not been clarified. First, the focus-shift selectivity is investigated by the numerical simulations. In the case where the focus-shift multiplexing technique is applied to \(xy\)-shift multiplexed SR-HDS, the inter-page crosstalk properties are clarified to decide the recording layout that can achieve a low-crosstalk readout. Second, the technique of displaying an additional phase pattern onto the spatial light modulator (SLM) is introduced, which is a focus-shift method without any special optical components, such as varifocal lenses. Finally, we investigate the relationship between the accuracy of the focus-shift and the parameters of SLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hariharan, P.: Optical holography: principles techniques and applications. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  2. Peyghambarian, N., Tay, S., Blanche, P.-A., Norwood, R., Yamamoto, M.: Rewritable holographic 3D displays. Opt. Photon. News 19, 2227 (2008)

    Article  Google Scholar 

  3. Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  4. Hesselink, L., Orlov, S.S., Bashaw, M.C.: Holographic data storage systems. Proc. IEEE 92, 1231–1280 (2004)

    Article  Google Scholar 

  5. Curtis, Kevin, Dhar, Lisa, Hill, Adrian J., Wilson, William L., Ayres, Mark R.: Holographic data storage: from theory to practical systems, 1–16. Wiley, New York (2010)

    Book  Google Scholar 

  6. Hosaka, M., Ishii, T., Tanaka, A., Koga, S., Hoshizawa, T.:1 Tbit/inch\(^2\) recording in Angular-Multiplexing Holographic Memory with Constant Signal-to Scatter Ratio Schedule” Jpn. J. Appl. Phys., 52, 09LD01 (2013)

  7. Ayres, M.R., Anderson, K., Askham, F., Sissom, B., Urness, A.C.: Holographic data storage at 2+ Tbit/in\(^2\). Proc. SPIE 9386, 93860G (2015)

    ADS  Google Scholar 

  8. Aoki, K., Okamoto, A., Wakayama, Y., Tomita, A., Honma, S.: Selective multimode excitation using volume holographic mode multiplexer. Opt. Lett. 38, 769–771 (2013)

    Article  ADS  Google Scholar 

  9. van Heerden, P.J.: Theory of optical information storage in solids. Appl. Opt. 2, 393400 (1963)

    Google Scholar 

  10. Mok, F.H.: Angle-multiplexed storage of 5000 holograms in lithium niobate. Optics Lett. 18, 915–917 (1993)

    Article  ADS  Google Scholar 

  11. Denz, C., Pauliat, G., Roosen, G.: Volume hologram multiplexing using a deterministic phase encoding method. Opt. Commun. 85, 171–176 (1991)

    Article  ADS  Google Scholar 

  12. Anderson, K., Curtis, K.: Polytopic multiplexing. Optics Letters 29, 1402–1404 (2004)

    Article  ADS  Google Scholar 

  13. Sawada, M., Kinoshita, N., Muroi, T., Motohashi, M., Saito, N.:Rotation spacing and multiplexing number in angle-peristrophic multiplexing holographic memory” Jpn. J. Appl. Phys., 54, 09MA03 (2014)

  14. Katahira, C., Morishita, N., Ikeda, J., Lim, P.B., Inoue, M., Iwasaki, Y., Aota, H., Matsumoto, A.: Mechanistic discussion of cationic crosslinking copolymerizations of 1,2-epoxycyclohexane with diepoxide crosslinkers accompanied by intramolecular and intermolecular chain transfer reactions. J. Polym. Sci. A 48, 44454455 (2010)

    Article  Google Scholar 

  15. Nakamura, K., Takagi, H., Goto, T., Boey, P.: Lim, H. Horimai, H. Yoshikawa, V. M. Bove and M. Inoue, Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,ud. Appl. Phys. Lett. 108, 022404 (2016)

  16. King, B.M., Neifeld, M.A.: Sparse modulation coding for increased capacity in volume holographic storage. Appl. Opt. 39, 6681–6688 (2000)

    Article  ADS  Google Scholar 

  17. Horimai, H., Tan, X.D., Li, J.: Collinear holography. Appl. Opt. 44, 25752579 (2005)

    Article  Google Scholar 

  18. Takabayashi, M., Okamoto, A.: Self-referential holography and its applications to data storage and phase-to-intensity conversion. Optics Express 21, 3669–3681 (2013)

    Article  ADS  Google Scholar 

  19. Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Shift-Multiplexed Self-Referential Holographic Data Storage. Applied Optics 53, 4375–4381 (2014)

    Article  ADS  Google Scholar 

  20. Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Recording procedures for high-quality signal readout in self-referential holographic data storage. Applied Optics 54, 5167–5174 (2015)

    Article  ADS  Google Scholar 

  21. Eto, T., Takabayashi, M., Okamoto, A., Bunsen, M., Okamoto, T.:Numerical simulations on 3D shift multiplexed self-referential holographic data storage: shift multiplexing properties along \(z\)-axis,” The Twentieth Microoptics Conference (MOC’15) Technical Digest, 112–113 (2015)

  22. Kogelnik, H.: Coupled-wave theory for thick hologram grating. Bell. Sys. Tech. J. 48, 2909–2947 (1969)

    Article  Google Scholar 

  23. Tanaka, J., Okamoto, A., Kitano, M.: Development of image-based simulation for holographic data storage system by fast Fourier transform beam-propagation method. Jpn. J. Appl. Phys. 48, 03A028 (2009)

    Google Scholar 

  24. Nobukawa, T., Nomura, T.: Multilayer recording holographic data storage using a varifocal lens generated with a kinoform. Optics Lett. 40, 5419–5422 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Takabayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takabayashi, M., Eto, T. & Okamoto, T. Numerical simulations on the focus-shift multiplexing technique for self-referential holographic data storage. Opt Rev 23, 987–996 (2016). https://doi.org/10.1007/s10043-016-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0254-2

Keywords

Navigation