Skip to main content

Advertisement

Log in

Coherence of radiation as studied by multiple coincidences of photons and particles

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Coincidences of photons and particles are measured by counting the number of events occurring simultaneously in two or more detectors. Coherent and incoherent radiation may have different behavior when the number of coincidence counts is studied with different arrangements of the coincidence detectors: the coincidence rate for the coherent radiation field, such as that obtained from a single-mode laser, is independent on the transverse separation between the detectors as long as the intensity of the radiation stays constant. On the other hand, with incoherent thermal radiation, using suitable monochromatization, the coincidence rate can show a significant bunching effect at detector separations smaller than the transverse coherence length. As a third alternative, photon antibunching may be observed if the radiation field is prepared in a number state, such as that available from resonance fluorescence of atoms, ions or molecules. If the time resolution of the detectors is not sufficient to resolve separate counts, corresponding effects can be observed in experiments, where the analog outputs of the detectors are multiplied to produce an intensity correlation signal. Intensity correlation and coincidence studies of photons and particles are reviewed in this report starting from the early experiments in the 1950’s and including recent work on X-ray coincidences and three-pion correlations. New results are presented for three- and four-photon coincidences at the X-ray wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Hanbury Brown and R. Q. Twiss: Nature 177 (1956) 27.

    Article  Google Scholar 

  2. R. Hanbury Brown and R. Q. Twiss: Nature 178 (1956) 1046.

    Article  ADS  Google Scholar 

  3. L. Mandel: Phys. Rev. A 28 (1983) 929.

    Article  MathSciNet  ADS  Google Scholar 

  4. G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang, T. E. Kalogeropoulos, and W. M. Powell: Phys. Rev. Lett. 3 (1959) 181.

    Article  ADS  Google Scholar 

  5. M. Gyulassy, S. K. Kauffmann, and L. W. Wilson: Phys. Rev. C 20 (1979) 2267.

    Article  ADS  Google Scholar 

  6. H. Bøggild et al. (NA44 Collaboration): Phys. Lett. B 455 (1999) 77.

    Article  ADS  Google Scholar 

  7. J. Adams et al. (STAR Collaboration): Phys. Rev. Lett. 91 (2003) 262301.

    Article  ADS  Google Scholar 

  8. E. Ikonen: Phys. Rev. Lett. 68 (1992) 2759.

    Article  ADS  Google Scholar 

  9. M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. Lett. 87 (2001) 140801.

    Article  ADS  Google Scholar 

  10. M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. Lett. 88 (2002) 244801.

    Article  ADS  Google Scholar 

  11. M. Yabashi, K. Tamasaku, and T. Ishikawa: Phys. Rev. A 69 (2004) 023813.

    Article  ADS  Google Scholar 

  12. E. Ikonen, M. Yabashi, and T. Ishikawa: Phys. Rev. A 74 (2006) 013816.

    Article  ADS  Google Scholar 

  13. E. Ikonen and S. Holopainen: Phys. Rev. A 76 (2007) 031801(R).

    Article  ADS  Google Scholar 

  14. M. Yabashi, J. B. Hastings, M. S. Zolotorev, H. Mimura, H. Yumoto, S. Matsuyama, K. Yamauchi, and T. Ishikawa: Phys. Rev. Lett. 97 (2006) 084802.

    Article  ADS  Google Scholar 

  15. E. Ikonen: J. Opt. Soc. Am. B 21 (2004) 1403.

    Article  ADS  Google Scholar 

  16. E. Ikonen: Phys. Rev. C 78 (2008) 051901(R) [Errata; 80 (2009) 019903].

    Article  ADS  Google Scholar 

  17. R. Hanbury Brown: The Intensity Interferometer (Taylor and Francis, London, 1974).

    Google Scholar 

  18. E. M. Purcell: Nature 178 (1956) 1449.

    Article  ADS  Google Scholar 

  19. G. A. Rebka and R. V. Pound: Nature 180 (1957) 1035.

    Article  ADS  Google Scholar 

  20. L. Mandel and E. Wolf: Rev. Mod. Phys. 37 (1965) 231.

    Article  MathSciNet  ADS  Google Scholar 

  21. R. J. Glauber: Phys. Rev. 130 (1963) 2529.

    Article  MathSciNet  ADS  Google Scholar 

  22. R. J. Glauber: Phys. Rev. 131 (1963) 2766.

    Article  MathSciNet  ADS  Google Scholar 

  23. H. J. Kimble, M. Dagenais, and L. Mandel: Phys. Rev. Lett. 39 (1977) 691.

    Article  ADS  Google Scholar 

  24. W. Neuhauser: Phys. Rev. A 1137 (1980) 2766.

    Google Scholar 

  25. R. Ghosh and L. Mandel: Phys. Rev. Lett. 59 (1987) 1903.

    Article  ADS  Google Scholar 

  26. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier: Nature 440 (2006) 779.

    Article  ADS  Google Scholar 

  27. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe: Nat. Phys. 3 (2007) 538.

    Article  Google Scholar 

  28. V. Ahtee, R. Lettow, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar: J. Mod. Opt. 56 (2009) 161.

    Article  ADS  Google Scholar 

  29. G. I. Kopylov and M. J. Podgoretsky: Yad. Fiz. 18 (1973) 656 [Sov. J. Nucl. Phys. 18 (1974) 336].

    Google Scholar 

  30. E. V. Shuryak: Phys. Lett. B 44 (1973) 387.

    Article  ADS  Google Scholar 

  31. F. Grard et al.: Nucl. Phys. B 102 (1976) 221.

    Article  ADS  Google Scholar 

  32. M. Deutschmann et al.: Nucl. Phys. B 103 (1976) 198.

    Article  ADS  Google Scholar 

  33. N. N. Biswas et al.: Phys. Rev. Lett. 37 (1976) 175.

    Article  ADS  Google Scholar 

  34. G. N. Fowler and R. M. Weiner: Phys. Lett. B 70 (1977) 201.

    Article  ADS  Google Scholar 

  35. U. Heinz and Q. H. Zhang: Phys. Rev. C 56 (1997) 426.

    Article  ADS  Google Scholar 

  36. U. Heinz and A. Sugarbaker: Phys. Rev. C 70 (2004) 054908.

    Article  ADS  Google Scholar 

  37. C. Adler et al. (STAR Collaboration): Phys. Rev. Lett. 87 (2001) 082301.

    Article  ADS  Google Scholar 

  38. E. V. Shuryak: Zh. Eksp. Theor. Fiz. 67 (1974) 60 [Sov. Phys. JETP 40 (1975) 30].

    Google Scholar 

  39. J. Javanainen, P. Helistö, E. Ikonen, and T. Katila: Phys. Rev. Lett. 55 (1985) 2063.

    Article  ADS  Google Scholar 

  40. G. Perlow: Phys. Rev. Lett. 40 (1978) 896.

    Article  ADS  Google Scholar 

  41. P. Helistö, E. Ikonen, T. Katila, and K. Riski: Phys. Rev. Lett. 49 (1982) 1209.

    Article  ADS  Google Scholar 

  42. E. Ikonen, P. Helistö, T. Katila, and K. Riski: Phys. Rev. A 32 (1985) 2298.

    Article  ADS  Google Scholar 

  43. J. R. Helliwell: Nat. Struct. Biol. 5 (1998) 614.

    Article  Google Scholar 

  44. E. Ikonen and R. Rüffer: Hyperfine Interactions 92 (1994) 1089.

    Article  ADS  Google Scholar 

  45. Y. Kunimune, Y. Yoda, K. Izumi, M. Yabashi, X. Zhang, T. Harami, M. Ando, and S. Kikuta: J. Synchrotron Radiat. 4 (1997) 199.

    Article  Google Scholar 

  46. R. Z. Tai, Y. Takayama, N. Takaya, T. Miyahara, S. Yamamoto, H. Sugiyama, J. Urakawa, H. Hayano, and M. Ando: Phys. Rev. A 60 (1999) 3262.

    Article  ADS  Google Scholar 

  47. E. Gluskin, E. E. Alp, I. McNulty, W. Sturhahn, and J. Sutter: J. Synchrotron Radiat. 6 (1999) 1065.

    Article  Google Scholar 

  48. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa: Rev. Sci. Instrum. 72 (2001) 4080.

    Article  ADS  Google Scholar 

  49. E. Ikonen: Phys. Rev. A 66 (2002) 065802.

    Article  ADS  Google Scholar 

  50. L. Mandel and E. Wolf: Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, U.K., 1995).

    Google Scholar 

  51. H. Heiselberg and A. P. Vischer: Phys. Rev. C 55 (1977) 874.

    Article  ADS  Google Scholar 

  52. T. Hara, M. Yabashi, T. Tanaka, T. Bizen, S. Goto, X. M. Marechal, T. Seike, K. Tamasaku, T. Ishikawa, and H. Kitamura: Rev. Sci. Instrum. 73 (2002) 1125.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikonen, E. Coherence of radiation as studied by multiple coincidences of photons and particles. OPT REV 17, 239–247 (2010). https://doi.org/10.1007/s10043-010-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0042-3

Keywords

Navigation